ASSIGNMENT - I
Problem - 1
let the free energy change meded at the barmier lee G at location λ ike moving prom closed (C) at O to open (O) state at 1. Let the every is open state by ${ }_{k_{0}} G^{*}$ [above. (C]].

If d_{c} and d_{0} are. lengths of th spring with channel closed and chanel openrespectively.
Thus Change in potential energy sher Channel opens $=\Delta G_{s}=\int_{d_{c}}^{d_{0}} \$ 2 x d x$

Thus 2 un harrier is modified
by ramp of height ΔG_{S}. po

$$
\begin{aligned}
& k_{c}=\sigma^{\alpha} e^{-\left(G-G^{k}-\Delta G_{s}\right) / R T} \\
& k_{0}=\alpha e^{-\left(G+\lambda \Delta G_{S}\right) / k T} .
\end{aligned}
$$

kate of channel opening

$$
\begin{aligned}
& \frac{d 0}{d t}=-k_{c} O+k_{0} C=-k_{c} O+k_{0}(T-0) \\
& \text { where } T \text { is total conc. of }
\end{aligned}
$$

where T is ta total conc of chamult.

$$
\Rightarrow \frac{d o}{d t}=k_{0} T-\left(k_{0}+k_{c}\right) o
$$

At steady state $\frac{d o}{d t}=0$
Probalikits of pen chanel,

$$
\begin{aligned}
& =\frac{0}{T}=\frac{k_{0}}{R_{0}+K_{c}} \\
& =\frac{e^{-\left(G+\lambda \Delta G_{s}\right) / R T}}{e^{-\left(G+\lambda \Delta G_{S}\right) / R T}+e^{-\left(G-G^{*}-\Delta G_{s}\right) / R T}}
\end{aligned}
$$

Take $\lambda=\frac{1}{2}$, and simplify write $\Delta b_{S}=\frac{1}{2} k\left(d_{0}^{2}-d^{2}\right)$
Assume Δx th separation in verysuale.

$$
\begin{aligned}
& d_{c}=\sqrt{x^{2}+y^{2}} \\
& d_{0}=\sqrt{(x+\Delta x)^{2}+y^{2}} \\
&=\sqrt{x^{2}+y^{2}+2 x \Delta x+\Delta x^{2}} \\
& \Delta x \text { verymia. }
\end{aligned}
$$

$$
\begin{gathered}
d_{0}=d_{c}+\frac{x \Delta x}{d_{c}} \\
\Delta G_{S}=\frac{1}{2} k\left(d_{0}^{2}-d_{c}^{2}\right)=\frac{1}{2} k\left[d_{c}+\frac{x \Delta x}{d_{c}}-\not d c\right] \\
{\left[d_{c}+\frac{x \Delta x}{d_{c}}+d_{c}\right]}
\end{gathered}
$$

substitute in $0 / T \approx K x \Delta x$.
From above \bar{n} rate constants ane a function of separation x.

$$
\frac{d o}{d t}=k_{0}\left(x_{1}\right) T-\left[k_{0}\left(x_{1}\right)+k_{C}\left(x_{1}\right)\right] 0 \text {. }
$$

when set apart to x,
at $t=\theta^{+}$An 0 value ${ }^{+}$

$$
\text { T } \frac{k_{0}\left(x_{0}\right)}{k_{0}\left(x_{0}\right)+k_{c}\left(x_{0}\right) \text {. Whim he del }} \text { of } x_{0} \text { for }
$$

long.
Then

$$
\frac{d o}{d t}=\left[\cdot\left[R_{0} \frac{k_{0}\left(x_{1}\right)}{k_{0}}-\left[k_{0}\left(x_{1}\right)+k_{c}\left(x_{1}\right)\right] \frac{k_{0}\left(x_{s}\right)}{k_{0}\left(x_{0}+k\right.}\right]\right.
$$

kate of opening of channels.
PROBLEM -2.
If before chare clamps, voltage held steady at v_{1} and it is changed fo v_{2} then

$$
\begin{aligned}
& \frac{d h}{d t}=\frac{h_{s}\left(v_{2}\right)-h}{\tau_{1 H}\left(x_{2}\right)} \text { describes } \\
& \text { with } \quad h(t=0)=h_{\infty}\left(x_{1}\right) \quad \text { the change }
\end{aligned}
$$

tue solution to un above diff. eqn. $_{\text {in }}$

$$
\text { The solution to th r abovecult } h(t)=h_{\infty}\left(v_{2}\right)+\left[h_{\infty}\left(v_{1}\right)-h_{\infty}\left(v_{2}\right)\right] e^{-t / c_{1}\left(v_{y}\right)}
$$

ha changes exponentially tron

$$
\begin{aligned}
& h_{\infty}\left(v_{1}\right) \quad-h_{H}(t)=h_{\infty}\left(v_{2}\right)+\left[h_{\infty}\left(v_{1}\right)-h_{\infty}\left(v_{2}\right)\right] e^{-t / T_{H}} v_{1} \\
& I_{1}\left(v_{2}-E_{A}\right)
\end{aligned}
$$

$E_{H}=-43 \mathrm{mV}$. Ale the clamp potentials arsed ark below EH. Thus all thecurrentsone inward currents only increase or decrease prom the holding current which is a high inward re current at the initial portion of the clamp. So the is no "actual" reversal in polarity.

To determine E_{H}, I_{H} unst go to Eth tron 0 current. Thus a clamp protocol when at the tail the clamp potential is changed to variety of values. line below.

stree this true reversal could take place is E_{H}.

Determing $h_{\infty}(V)$ \& $l_{\text {af }}(V)$ was discussed in cldss. (like other HH gating variables).

PROBLEM -3
In the top model. Ate binding of 2^{2+} to the channel is sur affected by th trans member potential. because the ligaind (ion) L^{2+} does nt move throyts any traction of th nembrame. Where as in the second case sen. L^{2+} ion goes through half of then ancinbrane potential's feed to the binding site.
A is 2^{2+} unbound to chamil state \& B is 1^{2+} bound to deauvel state the follow, barrier diagrams one appropriate.

Top carl

If V is the membrane potential. $N_{\text {in }}-V_{\text {out }}$

Problem 4 (Part A discussed in class)
Problem 4 (Part B)

$$
\begin{align*}
I_{\text {ext }}= & C \frac{d v}{d t}+\bar{g}_{k} n^{4}\left(V-E_{k}\right)+\bar{g}_{L}\left(V-E_{L}\right) \tag{1}\\
\frac{d n}{d t} & =\alpha(v)(1-n)-\beta(V) n
\end{align*}
$$

Small signal deviation

$$
I_{\text {ext }}=I_{\text {ext }}^{2}+i_{\text {ext }} \quad V^{2}=V^{2}+v \quad n=n^{2}+\eta
$$

$\alpha(v)$ \& $\beta(y)$ linearized functions of v

$$
\alpha(v)=\alpha^{2}+a v \quad \beta(x)=\beta^{2}+b v
$$

Substituting str above in (1)
(2) \ldots

$$
\left[\begin{array}{l}
I_{\text {ext }}^{2}+i_{\text {ext }}=C^{\frac{d\left(V^{2}+v\right)}{d t}}+\bar{g}_{k}\left(\eta^{2}+\eta\right)^{4}\left(V^{2}+v-E_{K}\right) \\
+\bar{g}_{L}\left(V^{2}+v-E_{L}\right) \\
\frac{d\left(n^{2}+\eta\right)}{d t}=\left(\alpha^{2}+a v\right)\left(1-n^{2}-\eta\right)-\left(\beta^{2}+b v\right)\left(n^{2}+\eta\right)
\end{array}\right.
$$

Now $\left(n^{2}+\eta\right)^{4} \approx n^{r^{4}}+4 n^{2} \eta$. neglecting higher power
at $v^{2} \quad \frac{d v}{d t}=0 \quad \& \quad \frac{d n}{d t}=0$ of η ?

Thus $F_{\text {ext }}^{\gamma}=g_{K} \eta^{\gamma^{4}}\left(V^{\gamma}-E_{K}\right)+\bar{g}_{L}\left(V_{L}-E_{L}\right)$

$$
\text { s } \alpha^{2}\left(1-n^{2}\right)-\beta^{2} n^{2}=0
$$

Usingtor above in $(2$ and neglecting second and higher orch terms of th sun variables (also η^{v}

$$
\begin{aligned}
& \text { ext } \approx C \frac{d^{2}}{d t}+g_{k} n^{2} v+4 g_{k} n^{3} \eta\left(v^{2}-E_{k}\right)+g_{k} v \\
& \frac{d \eta}{d R} \simeq-x^{2} \eta+a\left(1-\eta^{2}\right) v-\beta^{2} \eta-b n^{2} v .
\end{aligned}
$$

PROBLEM 5

$$
\begin{aligned}
& \frac{d u}{d t}=1-(b+1) u+a u^{2} v \\
& \frac{d v}{d t}=b u-a u^{2} v
\end{aligned}
$$

Eq. pis are intersection of nullclines.

$$
\begin{aligned}
& \frac{d u}{d t}=0 \Rightarrow \quad v_{u_{u c}}=-\frac{1-(b+1) u}{a u^{2}} \quad \begin{array}{l}
\quad \text { o } \\
u \neq 0
\end{array} \\
& \frac{d v}{d t}=0 \Rightarrow v_{v_{n c}}=\frac{b}{a r} \\
& v_{u_{n c}}=v_{v_{n c}} \text { for eq pi-. } \\
& \Rightarrow-\frac{1-(b+1) u}{a u^{2}}=\frac{b}{a n} \\
& -1+(b+1) u=b u \\
& u_{e q}=1 \quad v_{e q}=b / a \quad \text { eq. } \\
& J=\left.\left[\begin{array}{cc}
-(b+1)+2 a n v & a n^{2} \\
b-2 a u v & -a n^{2}
\end{array}\right]\right|_{\text {at. }} .\left[\begin{array}{cc}
b-1 & \cdot a
\end{array}\right] \\
& =\left[\begin{array}{cc}
b-1 & -a \\
-b & -a
\end{array}\right]
\end{aligned}
$$

For eigen values.

$$
\begin{aligned}
& \operatorname{det}[\lambda I-J]=0 \\
& \Rightarrow \quad \lambda^{2}+(a-b+1) \lambda+a=0 \\
& \lambda=\frac{b-a-1}{2}+\frac{\sqrt{(b-a-1)^{2}-4 a}}{2} \text { divide: } 2
\end{aligned}
$$

$$
\begin{align*}
& \text { loved be spiral if } \\
& \frac{4 a}{(b-a-1)^{2}}>1 \Rightarrow a^{2}-2 a b-2 a+1 . \tag{-1}
\end{align*}
$$

The boundary between real and condplex regions in $a^{\prime} \& b^{\prime} b^{\prime}$ - plane can lur Solved by setting (1) to 0 . Also th form is symmacisic in a \& b

For a on satisfying un above b <0

Consider only $a>Q, b>0$.

$$
\begin{gathered}
b-a-1=0 \\
\Rightarrow \lambda \text { imaginary. } \\
\operatorname{Re}[\lambda]<0 \\
\text { or } b-a-1<0 \\
b<a+1
\end{gathered}
$$

Now consider for ETher 3 quarts ants. Limit cycle cannot be proven. When (FOR You TO DO)

