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Summary. The shape of the energy barrier inside thin, insulating membranes can be 
an important factor in determining the detailed behavior of transmembrane ionic flows. 
In particular, a model is developed in which the shape of the barrier is expected to have 
direct influence on such experimentally important membrane properties as: (a) the shape 
of the current-voltage relation; (b) the dependence of zero current conductivity on asym- 
metric concentrations; (c) the dependence of the rectification ratio on the concentration 
ratio. 

Current-voltage curves were measured for a wide range of symmetrical and asym- 
metrical concentrations in black lipid (phosphatidyl ethanolamine) films in the presence 
of nonactin and potassium. A single barrier shape was found to describe accurately the 
experimental results in terms of the model. 

The electrical behavior of black lipid (bilayer) membranes formed in 

aqueous solutions of hydrophylic ions is similar to that of a thin insulating 
film (Mueller, Rudin, Tien & Wescott, 1962; Hanai, Haydon & Taylor, 
1964). Such behavior arises largely from the great cost in energy required 

to move a charge into the insulating region. In the case of black lipid films, 
this energy barrier is likely to result from the low dielectric constant of 

the hydrocarbonlike membrane interior. 

Lipophilic ions or small amounts of ionophorous neutral macrocyclic 
molecules (Pressman, 1968) that render alkali cations lipid soluble by com- 
plexing with them (Pioda, Wachter, Dohner & Simon, 1967; Shemyakin 
et al., 1969) are observed to increase bilayer conductivity by many orders 
of magnitude (Mueller & Rudin, 1967) as a result of a selective lowering 
of the energy barrier to transmembrane ionic movement. In the presence 
of neutral macrocyclic molecules, the identity of the current-carrying species 
is known and the behavior of the membrane conductance is well documented 
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(Andreoli, Tieffenberg & Tosteson, 1967; Lev & Buzhinsky, 1967; Tosteson, 
1968; Szabo, Eisenman & Ciani, 1969). 

Current-voltage (I-V) curves observed both in the presence (Buzhinsky, 
1968; Szabo et al., 1969) and absence of neutral ionophores are generally 
nonlinear and of two types: either the current increases faster than the 
voltage or the current increases more slowly than the voltage and reaches 
some saturating value. Careful examinations of possible mechanisms 
responsible for nonlinear I -V curves in bilayer membranes were made by 
Walz, Bamberg and L/iuger, 1969; Neumcke and L/iuger, 1969a, b; and 
more recently by L/iuger and Stark, 1970; Stark and Benz, 1971; Stark, 
Ketterer, Benz and L/iuger, 1971. 

In this paper we shall analyze I-V curves where the current increases 
more steeply than the voltage, in terms of a barrier model which is found 
to be able to account for the experimentally observed I -V behavior of 
bilayers in the presence of nonactin and K + over a wide range of concentra- 

tions. 

The Barrier  M o d e l  

We address ourselves to the relationship between the rate of transmem- 
brahe ion translocation and the detailed energetic environment an ion 
encounters within the membrane. We believe that the I -V curves, in cases 
where the important rate-limiting step is the flow of ions or charged com- 
plexes across the membrane, can be understood in terms of two assumptions: 
first, that the flow is proportional to the gradient of the electrochemical 
potential O(x) 1 of the charged species, and second, the electrochemical 
potential is given by the sum of the electrical potential ~b (x), the concentra- 
tion potential In (c(x)/c(O)),  and an invariant barrier function o)(x), which 
represents the energy cost of moving an ion from place to place inside the 
membrane. The existence of such a barrier function can be easily inferred 
from the observations, first, that the hydrocarbon interior of the membrane 
is of much lower dielectric constant than the aqueous solutions bathing the 
film and, second, that a considerable amount  of energy is required to move 
an ion from a region of high dielectric constant to a region of low dielectric 
constant. For simplicity, we also make the assumptions that the electric 
field is constant in the membrane z, diffusion coefficients are constant 

1 All potentials will be expressed in units of kT/e and all energies in units of kT. 
2 This is a good assumption if the charge in the membrane is small and the approximation 
d2g/dx2~--O holds for Poisson's equation; see Walz et al., 1969 for a discussion of the 
conditions when this is so. 
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within the membrane, activities and concentrations are equal and that all 
of the voltage drop occurs across the membrane. We will present experi- 
mental evidence for the validity of this model in the case of the nonactin- 
potassium complex. 

The electrochemical potential 0 (x) is given by 

(x) = co (x) + In (c (x)/c (0)) + ~b (x) (1) 

where e is the concentration of univalent cationic species and ~b(x) is the 
electrical potential. The current density J will then be given by 

[ de dO do9 \ 
J = - eD (-d-xx + c ~ + c ~ - )  (2) 

where e is the charge per unit concentration (e.g., per mole or per molecule) 
and D is the diffusion constant of the permeant species. The concentration 
will thus be an explicit function of position which adjusts itself in such a 
way that J is fixed for a given voltage across the membrane. We use the 
constant field approximation to give ~b(x)=-ux/d,  where u is voltage 
across the membrane. The solution to Eq. (2) is then 

2eD cl eUl2--c2 e -u/2 
- -  , ( 3 )  

J= d i e[-~_+~(r d~ 
- 1  

where cl is the concentration on the left boundary, c2 the concentration on 
the right boundary, and d is the membrane thickness. For simplicity we 
express the integral in terms of 4, the dimensionless distance coordinate 
given by r = 2 x/d. 

The above derivation follows directly that of Neumcke and L/iuger, 
1969b. They, however, calculated co (4) from an image charge model, while 
we will reexamine this approach from another point of view and treat the 
barrier o9(~) as a measurable function. The validity of the model will be 
checked by how well a single barrier shape can explain results obtained over 
a wide range of experimental conditions. 

The Influence of  Barrier Shape on Current-Voltage Characteristics 

Before proceeding to the interpretation of experimental results, it will be 
useful to consider several specific barrier shapes and the nature of the results 
to be expected in each case. This will help to form an intuitive idea of the 
conditions of applicability of the barrier model. 
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Fig. 1. A triangular barrier of height 6 and thickness d. The current-voltage relation for 

this barrier is given by Eqs. (5) and (6) 

First, let us consider the simple triangular barrier shown in Fig. 1 de- 
scribed by: 

o~(x)=r 1 -  , ~ - < x = 2 ,  (4) 

o)(~)=r -1<~<1. 

Eq. (3) for the membrane current becomes for this triangular barrier" 

2 eD e-~ e ~/2 - Cz e -u/2) 

J =  d (e(-~-~)_ 1 ) (l_e-(~-+~)) (5) 
+ 

We note that if the applied voltage is much less than the height of the 
barrier (e -r ~ 1), the result simplifies to 

J = - ~ -  e-r  (ca e"/2 - e  2 e-"/2). (6) 

If the concentrations are equal on both sides of the membrane (el =c2) the 
current-voltage curve is then of the form 

j = 2 edD " c r e- + sinh (�89 u). (7) 

The important part of this result, namely that the current varies with 
the hyperbolic sine of the voltage multiplied by one-half (and not some 
other number), is often applied in essentially a priori  fashion. (See, for 
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Fig. 2. A trapezoidal barrier with thickness d at the base and thickness (1 --2n)d at the 
top. This barrier is shown in Fig. 3 a - d for various voltages and concentrations 

example, L~iuger & Stark, 1970). Several simply derived consequences of 
the form of barrier giving rise to I-V relations of Eq. (7), are not generally 
recognized. In particular, the influence of barrier shape on I-V curves 
expected in asymmetrical solutions hzs not been considered. 

We use the form of the I - V  curve givel~ in Eq. (6) for simplicity in 
making the point. If tbc current is to be zero, the voltage must be 

Uo = In c 2 .  (8) 
c1 

We now inspee': the form of the current-voltage curve when the voltage is 
measured with respect to the resting potential Uo. 

J (4 u) --- e-* c2 sinh (4 u/2), 
(9 )  

A U = u - u  0. 

Consequently, the I-V curve will be symmetric about the resting potential 
even f o r  a s y m m e t r i c  concentrat ions  and the zero current conductivity will be 
proportional to Vcl c2. Clearly, the rectification ratio I J(  + A u) /J (  - A u) I = 1 

even with asymmetric solutions. 
It should be carefully noted at the point that these results are a direct 

consequence of the specific shape of the barrier, and hold only for a barrier 
which has a sharp maximum in the center of the membrane. To show this ex- 
plicitly, let us consider the trapezoidal barrier of Fig. 2. We start with the 
case of symmetric solutions. If a positive voltage is now applied, the barrier 
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Fig. 3. (a) A trapezoidal barrier with equal concentrations on both sides and a positive 
voltage u applied. The net current can be thought of as the sum of a current from right 
to left and one from left to right, as indicated by arrows. The barrier to flow of ions from 
left to right is r  n u while that to flow from right to left is r + (1 - n) u. (b) A trapezoidal 
barrier with asymmetric concentration (c a > cl). The membrane potential u 0 is given by 
Uo =ln(c2/cl). As in (a), the current may be decomposed into left-to-right and right-to- 
left components, but now since u equals u 0 these currents are equal but opposite as shown 
schematically by arrows of equal size. (c) A trapezoidal barrier with asymmetric con- 
centrations (c a > c~) and u lying between 0 and u 0. Here the important part  of the current 
is from right to left (large arrow) and the voltage dependence is determined by how the 
barrier for ions in the c 2 reservoir changes. Since the barrier is given by 4 + ( 1 - - n ) u  
the current will have an exponential slope of (1 --n). (d) A trapezoidal barrier with asym- 
metric concentrations (c2 > cx) and a negative applied voltage. Here the important current 
is from right to left but the highest point of the barrier is now the right-hand corner. 
Consequently, the current will be determined by the barrier of height c)--nu to ions 

moving from right to left 
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will appear as in Fig. 3 a. Since the differential equation [Eq. (2)] describing 

the current flow is linear, we can think of the total membrane current as 
being composed of a current flowing from left to right and a current flowing 

from right to left. We see that in Fig. 3a the highest part of the barrier is 
closer to the left side of the membrane than to the right. If we assume this 
highest part to be the most important, the current flow from left to right 
will be proportional to the number of ions that have sufficient energy to 
surmount this barrier. This number will in turn be, according to the Boltz- 
mann relation, proportional to the exponential of minus the maximum 
barrier height. From the geometry of the barrier and the constant-field 
approximation, the barrier for current flow from left to right will be q~ - n u, 
where ~b is the maximum barrier height with no voltage applied. Similarly, 

the barrier for current flow from right to left will be ~b + (1 - n ) u  (see Fig. 3 a). 
If the sign of the voltage were reversed (u <0), the right-hand corner of the 
barrier would become important. Thus, we can write 

fGe-4"(ce""-ce-(1-n)u), u > 0  (10) 
J=~Ge-4"(ce(1-")Uce-""), u<0  

where G is a proportionality constant describing the zero current con- 
ductivity. For  sufficiently large lul, only the exponential in nu will be 
important and I JI will be given by 

[Jl~-Gce-~ e "l"l. (11) 

This result can be compared with Eq. (7) which at large l ul would reduce 
to Eq. (11) with n = 1/2. We thus note an immediate consequence of a flat- 
tened barrier; since n is now less than 1/2, the exponential current does not 
rise as steeply with voltage as it does for a triangular barrier. This is not a 
small effect. For  example, at 100 mV (u =4), with n =0.3, the current given 
by a flat barrier would be less by a factor of 2.2 than for a triangular barrier 
showing the same zero current conductivity. It is a significant observation 
that many lipid bilayers with carrier-mediated transport show currents less 
than would be predicted by a value of n = 1/2, and exponential slopes (i.e., 
slopes of log I vs. V curves) of less than 1/2 at large voltage (see, for example, 
Szabo et al., 1969) 3 

We can generalize now the results for the trapezoidal barrier to the case 
of asymmetric solutions with left-hand concentration cl and the fight-hand 
concentration c2 and note, by following the arguments which led to Eq. (10), 
3 It should be noted that a u/2 exponential slope is built into any single jump Eyring 
model and that for a true exponential slope of less than u/2, at least two jumps must be 
used. (Jumps might, for example, be placed at positions corresponding to the corners 
of the trapezoidal barrier. Our approximations in this section reduce essentially to such 
treatment.) 
6a  J. Membrane  Biol. 11 
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Fig. 4. Schematic current-voltage curves showing the barrier shape for different regions 
of voltage dependence. Voltage is plotted as a function of u -  u o to show both directions 
of current on the same graph. In the "forward" curve, the voltage is negative and the 
current flow is from right to left. In the "reverse" curve, the voltage is positive and the 

current flow is from left to right 

that 
fGe-O(q e-(1-~)"), u>O 

J=~Ge_~(cl e~"- c2 (12) e(l-n)U--c2e-nU), U < 0 .  

At zero current, the barrier will now, by virtue of the asymmetry in con- 

centration, have the form shown in Fig. 3b. If we apply a voltage so as to 

increase the height of the barrier for ions going right to left (ions from c2, 

the high concentration side), the current will eventually vary as cl e ~" because 

the second term will again have become negligible. The current at large 

voltages on either side of the resting potential will therefore be proportional 

to e n lul as shown by the solid lines in Fig. 4, where we plot current in both 

directions on the same axis against l u - u o  I. The insets show the shape of 
the barrier for various current-voltage combinations. The curve labeled 

" fo rward"  corresponds to the situation shown in Fig. 3 d with u < uo; the 
curve labeled "reverse" corresponds to the situation shown in Fig. 2a with 

u > Uo. Note that because of the convention chosen on the sign of the voltage, 
the " fo rward"  direction corresponds to voltages less than Uo and the 

"reverse" to voltages greater than u0. 
What happens in the intermediate case where the voltage is not very 

different from Uo ? For the reverse curve in Fig. 4, clearly the current will 
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simply approach zero as u approaches Uo. This is shown by the dotted line. 
The case of the forward curve is more interesting. For situations like that 
shown in Fig. 3 c where u lies between uo and zero, the left-hand corner of 
the trapezoid will still be important for current flow from right to left. If c2 
is sufficiently greater than c~, the e2 current will be dominant for a small 
voltage range as the barrier changes from the form of Fig. 3b to that of 
Fig. 2, and the current will have the voltage dependence given by 

J'~ -Ge-~' c2e -(a-")", 0<u <Uo. (13) 

This is clearly a steeper curve than that for l ul >>Uo, since 1 - n  is greater 
than n. This transition region is shown by the heavy dashed line in Fig. 4. 
It should be noted that near u = 0 the barrier is flat and the I-V curve in this 
region will therefore be influenced by the shape of the top of the barrier. 

We can also see that for this behavior there is substantial rectification 
about the resting potential for asymmetric concentrations (c~ 4=c2). We 
might also expect the dependence of zero current conductivity on the con- 
centrations to be different. This is easily seen explicitly. We write the equa- 
tion corresponding to Eq. (9) but for a trapezoid instead of a triangle 
barrier: 

j=~Ge-~'cl ea"~ e-(1-n)~"), u>0 
(14) Ge-~ci e(1-")u~ (e(1-") a " -  e-" a"), u_<0. 

F o r  I zl u I sufficiently large 

J(+A u) = G e  -r c 1 e ""~ e aau, A u >>0 

J ~  J(-Au)=-Ge-~cle{1-")"~ +"a", Au<O. (15) 

The rectification ratio is therefore given by 

J(+Au) e(Za_~,~o ( c ~  2"-~ 
= - - -  ( 1 6 )  

J ( - A  u) - \ c 1 / " 

If n = 1/2, the rectification ratio is unity as expected. To find the zero current 
conductivity we can expand the exponentials in Eq. (14) for small A u and 
we see 

J~-Ge-~cle""~ IAul<l, 

J =Ge_~[c(li_.)c~] (17) 
Au 

which can be contrasted with the Vc~c2 dependence for the triangular 
barrier [Eq. (9)]. 

The point of the preceding discussion, then, was to show intuitively that 
the barrier shape influences three things: (a) the shape of the I-V curve; 

fib J. Membrane  Biol. I I  
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(b) the dependence of zero current conductivity on the concentrations; and 
(c) dependence of the rectification ratio on the concentration. We consider 
these to be important but not generally recognized consequences of barrier 
shape. In particular, a barrier or hopping model which gives rise to a sinh (u/2) 
type of I-V curve for a particular region of experimental conditions will not, 
in that region, give rise to rectification about the resting potential. 

Inversion of I -V Curves 

It is clear that the two barrier shapes discussed in the previous section 
are not likely to be strictly exemplified by any real system. Physical barriers 
are likely to be more rounded although they should nevertheless show 
somewhat the same trends as the two cases we have discussed. Thus, a 
barrier with a flattened top should show more rectification than one with a 
fairly sharp peak, for example. 

To deduce the barrier shape in bilayer membranes, we want to devise a 
method that will allow us to infer from the experimentally observed I-V 
curves the shape of the barrier underlying the I-V behavior. We begin by 
observing that all of the information about the barrier in Eq. (3) is contained 
in the integral in the denominator. We can therefore define a function S(u) 
as 

Cl e +u/2 --C2 e -u /2  

S ( u )  = ,] (U)exp (18) 

(having the dimensions of cm -1 amp-1 when the concentrations are in 
cm -3 and J is in amp/cm2). By comparison with Eq. (3), S(u) is given in 
terms of the barrier shape as 

1 1 

S(u)=-~-ff j l  d~. (19) 

Clearly, a necessary condition that the model be applicable is that S(u) be 
only a function of voltage. One can therefore measure I-V curves over a wide 
range of concentrations in symmetric and asymmetric solutions and deter- 
mine whether the same function S(u) describes all the I-V curves. If it does, 
it is worth pursuing the question further and solving the integral Eq. (19) 
for co (4). We will now proceed to carry out this program for a particular 
experimental system. 

Choice of Experimental System 

To test Eq. (3), we must find an experimental system where the con- 
ditions of applicability of Eq. (3) are satisfied. That is, an energy barrier 
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must be the rate-limiting step to the movement of a single monovalent 
species across the membrane between two reservoirs of well-defined con- 
centration. The reservoirs as well as the structure of the membrane must 
remain unaltered in the presence of an aplzlied electric field. For such a 
system it is possible to infer unambiguouslj  the shape of the energy barrier 
from the experimentally observed I-V relatim;. 

Among the well-characterized experimental systems the extensively 
studied nonactin-induced potassium permeability of bilayers appears to 
best fulfill the above conditions. The identity of the charge carrier is known 
to be the potassium-nonactin complex, which forms with a 1:1 stoichi- 
ometry in the aqueous phases and presumably at the r.lembrane surfaces as 
well (Szabo etal., 1969; Lhuger & Stark, 1970). Also, since the shape of 
the voltage-current curves of bilayers in the presence 02 nor~actin and KC1 
remains unaltered when the KC1 concentrations are varied over the range 
of 10 .3 ~ to 1 M and for applied potentials at least as large as _+200 mV 
(Hall, Mead & Szabo, unpublished results) one may conclude that the same 
rate-limiting process remains important throughout this range. Furthermore, 
the absence of a limiting current in the I-V relationships as well as the 
absence of deviations from a simple proportionality between membrane 
conductance and KCI concentration up to at least 1 M KC1 indicate that 
carrier gradients within the membrane are not limiting the rate of potassium 
transfer in that concentration range (Lhuger & Stark, 1970; Stark & Benz, 
1971; Ciani, Eisenman, Laprade & Szabo, 1972). 

The requirement that the membrane interior be the rate-limiting step in 
the transfer of the permeant species (i. e., the nonactin-K + complex) and the 
condition of field independent concentrations in the reservoirs of permeant 
species will both be met if the reaction 

K + +S* ~.~K + S* (20) 

between the K + ion and the membrane-bound nonactin S* producing the 
permeant K+-nonactin complex K + S* is near equilibrium. 

Since data presently available for the K+-nonactin system do not allow 
us to deduce unambiguously whether or not reaction (20) is at equilibrium, 
the validity of this condition must be regarded for the present as an a priori 
assumption. The validity of this assumption will be examined more closely 
in the Discussion. 

Assuming now that Eq. (20) does not deviate significantly from equilib- 
rium, we can evaluate the concentration of the charged complexes, c*+~,, 
at the membrane surface: 

Ci~+s. + =Ksc K e~. (21) 
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We can  relate the concen t ra t ion  of nonac t in  c* in the m e m b r a n e  to its 

k n o w n  value cs in the aqueous  phase  by  a par t i t ion  coefficient ks 

c* = ks c~. (22) 

The  concent ra t ion  of charge-carry ing complex  a t  the surface will then  be 

given by  

c**~ = Ks k, c s c~ . .  (23) 

I t  is clear tha t  our  original  f o rmu la t i on  fo r  the current  f low as a func t ion  

of vol tage applies to the m o v e m e n t  of K + - n o n a c t i n  complexes  across  a 

barrier .  We  can thus replace ci and  c2 in our  previous  t r ea tmen t  by  the 

appropr i a t e  concent ra t ion  of the complex  on  each side of the m e m b r a n e  

and  the current  will be  given b y  

j =  2eD ksK~c~(cr'~ eU/2--CK~ e-U~2) (24) 

d i e(~-+~162 d ~ 
- 1  

W e  have  implicit ly assumed the same concen t ra t ion  of nonac t in  on  b o t h  

sides for  simplicity. I t  will be  shown tha t  Eq. (24) is valid over  near ly  the  

entire range  of exper imenta l  condit ions.  

Materials and Methods 

Membranes were formed from a 15-mg/ml solution of readily available bacterial 
phosphatidyl ethanolamine (Supelco 04-6040) in decane. Membrane-forming solution 
was sucked up in a pipette and squirted at a small hole in the septum of a Teflon chamber 
with two compartments of about 25-ml capacity. This technique allowed using a minimum 
amount of membrane solution and together with the use of chlorided silver electrodes, 
minimized the accidental introduction of contaminants (Szabo et aL, 1969). Nonactin 
was a gift from Miss Barbara Stearns of Squibb. It was dissolved in ethanol at a concen- 
tration of 10 -3  M. Small aliquots of this stock solution were added to both sides of the 
membrane to obtain the desired antibiotic concentration in the aqueous phase. Equal 
volumes of ethanol without antibiotic had no effect on membrane conductance. Reagent 
grade potassium chloride was prepared as a stock solution and small aliquots added to 
increase the concentration. In the case of asymmetric solutions, aliquots of equal volume 
but different concentration were added to both sides to minimize pressure differentials 
which might disturb the membrane. To avoid ionic strength effects (Szabo et al., 1969) 
such as might arise from charge on the surface of the membrane (McLaughlin, Szabo, 
Eisenman & Ciani, 1970), relatively impermeant LiC1 was used to maintain a minimum 
ionic strength of 0.1 M. 

The electrical apparatus used consists of a differential electrometer, a current- 
measuring operational amplifier and a voltage generator which can sweep the voltage 
at rates from 0.003 mV/sec to 4000 mV/sec. In these experiments, the rate of sweep 
never exceeded 12 mV/sec and was generally less than about 4 mV/sec. In any case, 
controls were done to insure that the rate of sweep was sufficiently slow so as not to 
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Fig. 5. Schematic diagram of the experimental apparatus. An X - - Y  plotter was used to 

record the current-voltage curves directly 

affect the results. Silver-silver-chloride electrodes were used in a four-electrode system, 
and the I -V curves were traced directly on an X- -  Y recorder. A schematic drawing of the 
apparatus is shown in Fig. 5. The solutions on both sides were stirred with Teflon-coated 
magnetic fleas during measurements. The following experimental procedure was used 
to insure that no inaccuracies resulted from possible loss of antibiotic during the course 
of an experiment. Since the zero current conductivity of symmetric solutions with con- 
stant antibiotic concentration depends linearly on the aqueous concentration of carried 
ions (in the present case, potassium), each measurement of an I-V curve with asymmetric 
solutions was surrounded temporally by two I-V curves with symmetric solutions. For 
example, a given run might proceed in the following manner: a measurement might be 
taken with 10-3M KC1 solutions on both sides. A small aliquot of concentrated (4 M) 
KC1 would then be added to the front chamber of the measuring cell to give solutions 
of 10-aM and 10 -z M. After measuring the I -V curve, an identical aliquot would be 
added to the back to give solutions of 10 -2 M on both sides and so on up to the maximum 
concentration of 1 M on both sides. If the zero current conductivities of the symmetric 
solutions failed to be linear in concentration, the data were not used. In this way, data 
reproducible on an absolute level to better than 10 % were obtained. The membrane area 
was measured visually at a magnification of 50 x with a calibrated reticule. 

Results 

D a t a  f r o m  I - V  curves in b o t h  symmet r ic  and  a symmet r i c  solut ions were 

used to  calculate the funct ion  S(u) as def ined in Eq. (18), bu t  with cl and  

c2 deno t ing  the KC1 concent ra t ions  at  the left- and  r igh t -hand  sides of the 

m e m b r a n e .  The  exper imenta l  values of  S(u) are p lo t ted  in the pract ica l  

units,  (moles /cm 3) per  (amp/cm2),  in Fig. 6. All of these points  were then  

fi t ted to  a least-squares  po lynomia l .  Only  even powers  of  u were used since 

S(u) can  be  seen to  be  an  even funct ion  of u by  inspect ion of Eq.  (19). This  

p o l y n o m i a l  is the cont inuous  curve p lo t ted  in Fig. 6. Since this po lynomia l  

gives a good  fit, it is clear tha t  S(u) is not a funct ion  of concen t ra t ion  within 

the l imits of exper imenta l  error .  Consequent ly ,  the prerequisi te  for  the 

mode l  to  be  useful has  been  satisfied exper imenta l ly  for  the nonac t in  sys tem 
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Fig. 6. The function S(u) as calculated from Eq. (18) taking c 1 and c 2 as the aqueous 
KC1 concentration. Symmetric concentrations are shown by open symbols and asym- 
metric concentrations by closed symbols. This function contains all information on the 
shape of the barrier and is seen to be a function of voltage only within an experimental 

error 

and we can proceed with confidence to analyze S(u) to deduce a shape for 
the barrier. It should be noted that the units in which S(u) is measured have 
no effect on the voltage dependence of S(u) or on the shape of the polynomial 
fit. A different choice of units would have resulted in polynomial coefficients 
differing only by a constant factor, and would correspond to the fact that 

the units of S(u) are determined by the units of the diffusion constant, and 

those of the membrane thickness, the electric charge and the concentration 

in Eqs. (20) and (25). (In Eq. (25), ksK, Cs is dimensionless.) 

Interpretation as a Particular Barrier Shape 

From Fig. 6 we know that a single experimentally measured form of the 
integral function S(u) fits the data over a wide range of concentrations. It 
is therefore worthwhile to see if a physically reasonable barrier can explain 
the observed form of the integral and consequently the observed I -V curves. 
We therefore proceed to solve the integral equation 

j~ e [ ~  + ~ (~)] d # 2eD ks Ks cs S (u) (25) 
_~ d 
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1 
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Fig. 7. The physical meaning of the parameters in Eq. (28). ~0 is the height of the inflec- 
tion point, ~ measures the position of the inflection point and corresponds roughly to 
(1 --n)/2 for the trapezoidal barrier of Fig. 2. A if, which can be either positive or negative, 
allows either a peak or a dip at the center of the membrane. This form was found to give 

the most satisfactory solution to the integral equation [Eq. (27)] for S(u) 

for o~(~). All of the constants have their previously assigned meanings and 

S(u) is calculated from experimental data according to Eq. (18). Note  that 

because of the experimental units of S(u), e in this equation is the charge 
of one mole (i.e., 1 Faraday). We can formally write 

2eD 
e~176 d ks Ks cs (26) 

where e ~~ is a constant that will depend on the units in which the various 
parameters are measured. Note that this will determine the units of S(u). 
Eq. (25) may then be rewritten in the form 

i e(_~.+t~,({)_,~ol ) 
S (u) = j d 4. (27) 

-1 

Thus, even though we do not  know most of the parameters on the right-hand 
side of Eq. (26), we can nonetheless examine the shape of the barrier to 

within a constant additive factor by inversion of Eq. (27) for co(~)-COo. 
We now choose as a sufficiently general function 

This function gives a smooth barrier with continuous derivatives and allows, 
through A q~, either a peak or a dip in the center. Fig. 7 shows the geometric 
meanings of these parameters. 

If we now measure S(u) in units of (moles/cma)/(amps/cm 2) and set the 
magnitude of e -~176 at 10 -3, we can use Eq. (28) to give the best fit to the 
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Fig. 8. The barrier shape as determined by the solution of Eq. (27). The height of the 
barrier is not  measured accurately, but the flat top and position of the corners are 
sensitive to the experiment and are accurately determined. The values of the parameters 
are: 40 = 13.2 kT, A 4=0 .02  kT, e=0 .47 .  (An e = 0 . 4 7  corresponds roughly to a value 

of n=0 .27  in Fig. 2) 

values of S(u) over the experimental range of roughly +300 mV. We find 
that ~bo is then about 13 kT and that the barrier has the shape shown in 
Fig. 8. We know that a reasonable estimate of the energy difference of a 
complex at the edge of the membrane from one in the interior can be ob- 

tained by using the Born expression (Neumcke & L/iuger, 1969b) 

e 2 

L) 
If we use ~em "2.0,  %q ~80 and take r~o, to be the radius of the K+-nonactin 
complex (about 10 A), we calculate a value of energy difference of about 
14 kT. Since 13 kT is quite close to the value we calculate from the Born 
expression, we conclude that e -~~ has a value within a few orders of mag- 
nitude of 10 -3 as measured in (coul cm)/(mole sec). Our measurement is 
clearly not sensitive to the value of e-~o0. This can be seen by observing that 
the contribution of the center of the barrier is going to be about 10 ~ (e 1~ 
greater than that of the edges as long as q~o is greater than about 10 kT. 
Thus, if we were to choose values of e -~ in the range 10 -1 to 10 -5, ~bo 
would change by +4  kT, but the parameters e and A q~ would not change 
significantly and these are the factors determining the voltage dependence. 
The other parameters q~o, D, k~, and K~ are all lumped together in deter- 
mining the zero current conductivity and are not significant in determining 
the form of the voltage dependence. As a direct check on this procedure 
the barrier of Fig. 8 was used to calculate the I-V curves from Eq. (24). 
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Fig. 9. Voltage-current curves for symmetric KC1 concentrations. Positive and negative 
current directions are plotted on the same curve. The solid curves are calculated from 
the polynomial form of S(u) shown in Fig. 6. Note that the fit is excellent at low con- 
centrations and low voltages, but that at high voltage and high concentrations, the 
measured current is less than predicted presumably because under these conditions 

surface rate limiting is not totally negligible 

Fig. 9 shows the experimental I -V curves in the case of symmetric 
potassium concentrations for three concentrations. The solid line is cal- 
culated using Eq. (24) and the barrier of Fig. 8. Note that the fit is excellent. 
In particular, the exponential dependence at higher voltages (which results 
in a straight line on the semilog plot of Fig. 9) is accurately predicted by the 
barrier shape. Fig. 10 shows the experimental I -V curves resulting from 
asymmetric potassium concentrations. The symmetric curve for 10-3M 
potassium is shown for reference. " F o r w a r d "  and "reverse"  directions are 
plotted simultaneously to show the very evident rectification. Open symbols 
indicate the "reverse"  direction and closed symbols the " fo rward"  direc- 
tion. Again the agreement is excellent. In particular, note that the rectifi- 
cation manifested by the separation of the curves and the exponential slopes 
at large voltages are well described by the barrier function of Fig. 8. In fact, 
the fit is better than that derived from the polynomial form of S(u) and 
shows quite clearly that the model is capable of accounting for all of the 
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Fig. 10. I-V curves for asymmetric KC1 concentrations. The lowest curve is the 10 - 3  M 
symmetric curve of Fig. 9 repeated for comparison and includes positive and negative 
currents. For the other curves, open symbols indicate positive (left-to-right) currents 
and closed symbols indicate negative (right-to-left) currents. Note the increase in the 
rectification, indicated by increased separation of the closed and open symbol curves, 

as the asymmetry of the concentrations is increased 

data. We proceed to examine the results in more detail in the context of the 

earlier intuitive discussion. 

Since the barrier is nearly trapezoidal we should expect the rectification 
ratio and the zero current conductivity to be similar to those derived in the 
intuitive discussion section for a trapezoidal barrier. The experimental 
barrier is very nearly the same as the barrier in Fig. 2 with n =0.28. Accord- 
ing to Eq. (17), the rectification ratio should therefore be approximately 
given by ( c z / c l )  -0 .44  for large A u. This approximation is plotted as the 
dashed line in Fig. 11. The experimental points are calculated from the 
data of Fig. 10. It is clear that there is more rectification as the concentra- 
tions become more asymmetric. It is also readily apparent that the basic 
form of the rectification dependence is as expected from a roughly trape- 
zoidal barrier. Indeed, if the calculation of rectification ratio from the barrier 
is performed without approximation, the solid line of Fig. 11 is obtained. 
This is a very good fit. 
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Fig. 11. Rectification at 150 mV as a function of concentration ratio, plotted on logarith- 
mic scales. The solid line shows rectification as calculated from the model with the barrier 
function of Fig. 8. The dashed line shows the rectification, calculated using Eq. (16) 

with n = 0.28 for the rectangular barrier approximation 

The zero current conductivities in asymmetrical salt solutions are also 
as expected for a trapezoidal barrier with appropriate n value of 0.28 but 
the accuracy of measurement is not sufficiently good to draw conclusions 
on the basis of zero current conductivity data alone. 

The model thus satisfactorily explains the experimental results, even out 

to several hundred millivolts, with only small deviations. We emphasize 
that the consequences of barrier shape, (a) shape of I -V curve, (b) depend- 
ence of rectification on concentration ratio, and (c) zero current conductivity 
dependence on concentrations, have all been successfully demonstrated to 
be within the framework of the model. The a priori assumption that the 
voltage dependence of the important rate-limiting step is sinh (u/2) or the 
use of a single-jump Eyring treatment have been shown to be insufficiently 
accurate to describe the experimental results in the case of the nonactin-K + 
system. 

Discussion 

There are several objections which might be raised at this point. First, 
the membrane thickness and area can change with voltage. Capacitive 
measurements support the view that thickness decreases with increasing 
voltage (White, 1970). S(u), on the other hand, increases with voltage experi- 
mentally. In any case, the percentage change in S(u) is much too large to 
be accounted for by thickness change even if it were in the correct direction. 
Area change is a slightly greater problem. Area may increase slightly with 
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applied voltage. This means that J(u)exp is increasingly larger than it should 
be as the voltage increases and that S(u)  is increasingly smal ler  than it should 

be. This would not change the basic conclusions and here again the per- 
centage change must be small, certainly less than 10% by capacitance 
measurements*, and is not nearly sufficient, therefore, to explain the ob- 

served results. 

There are, however, more serious objections to our interpretation of the 

experimental data. The most important of these is the question of whether 

or not the surface reaction [Eq. (20)] is really at equilibrium. 

By careful consideration of our experimental data, we can show that 
deviations from equilibrium of reaction (20) (i. e. surface rate limiting) can- 

not easily account for the shape of the observed I -V relations at least where 
a sharp energy barrier in the center of the membrane is assumed s Such a 

model has been proposed by L/iuger and Stark (1970) and verified experi- 
mentally using the carrier valinomycin for which the surface reaction cor- 
responding to Eq. (20) can be driven out of equilibrium (Stark & Benz, 

1971). For  the above model, L~iuger and Stark derived the following ex- 

pression for the current density J in symmetrical salt solutions: 

J = R  sinh(u/2) (29) 
1 + A cosh(u/2) 

where R is a proportionality constant dependent on carrier, salt concentra- 

tion and membrane composition. The voltage independent parameter A 
measures the extent to which reaction (20) is displaced from equilibrium 6. 

For  the nonactin-K § system, both the strict proportionality of zero current 
membrane conductance to the KC1 concentration and the independence of 
the shape of I -V curves on concentration up to 1 i KC1 in symmetrical salt 

solutions imply that A is independent of the KC1 concentration. Considera- 

tion of our experimental data indicates that Eq. (29) cannot adequately 

4 Voltage dependence of capacitance was measured in our laboratory with films of 
composition identical to those which were used in this study. The results essentially 
agree with those of White, 1970. 
5 Preliminary results of relaxation experiments similar to those of Stark et al. (1971) 
but performed using nonactin and trinactin, indicate that reaction (20) is likely to be 
near equilibrium for the lipid and the range of concentrations examined in this paper 
(Laprade, Ciani, Eisenman & Szabo, personal communication). 
6 Note that more generally the parameter A also accounts for such nonequilibrium 
effects as carrier gradients in the membrane interior as well as rates of transfer of com- 
plexes from the aqueous phase across the membrane surfaces (see Stark & Benz, 1971). 
For the nonactin-K + system, the strict proportionality of the zero current concentration 
implies that carrier gradients are negligible. 



Barrier Model for Bilayers 95 

predict the I-V relationship for the nonactin-K § system unless the parameter 
A is allowed to vary as a function of the voltage 7. 

We thus conclude that one must require A to be voltage dependent or 
use a different model to explain satisfactorily the experimental result. 

In contrast, the same physically reasonable barrier shape can explain 
easily not only the result given above, but also I-V curves taken over a wide 
range of symmetric and asymmetric concentrations. 

The second difficulty in our interpretation of the I-V results is the 
possibility that the barrier height may be a function of voltage. In fact it is 
not possible solely on the basis of I-V curve measurements to distinguish 
formally between a sharp barrier which is a function of coordinate and a 
barrier which is some special function of voltage. In other words, the integral 
equation for S(u) [Eq. (20)] can be solved only if ~o is a function either of 
only or of u only. There are, however, some inductive arguments which 
show that a barrier whose height is primarily a function of position is more 
physically reasonable than one whose height varies with voltage. It is not 
too unreasonable to assume that the change in barrier height with voltage 
can be approximated by the first power of u in a series expansion 

r 1 6 2  2. (30) 

In this case, the current would be given by 

J = - ~  e -~'~ (cl e u/z - cz e-U/2). (31) 

It is then simple to show that the rectification ratio at large A u would be 

I J("kAu) I e -(4kAuu~ (32) = - (  C__~l-'kd"" 
ITCc- - u) cl 1 

If k =0, the rectification ratio is 1, as required. For other values of k, this 
dependence is dearly different from the concentration dependence of the 
rectification ratios expected for the trapezoidal barrier, and therefore pro- 
vides, in principle, a means of distinguishing between the two cases. 

It is only possible to get the same dependence one gets with a trapezoidal 
barrier if one assumes that the barrier is given by 

r 1 6 2  (33) 

7 As a specific example, we find that the voltage current relation for 0.001 M salt can 
be best fit by an A value of 0.02. At  first glance, the fit appears reasonable; but on closer 
inspection, it becomes apparent that the slopes of data and the theory disagree markedly. 
In the case of the data, the logarithmic derivative saturates at about 100 mV with a value 
of 0.35 but Eq. (26) predicts a value of 0.40 which then decreases steadily to a value of 
0.17 at 250 mV, where the experimental slope is still 0.35. 
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and is quite sharp. But we also know that a sharp barrier is inconsistent with 

the image force shape expected from the calculation of Neumcke and L~iuger 

(1969b). 

It is also quite likely that the image force is an important contribution 

to the shape of the barrier. Indeed, the barrier of the shape of Fig. 10 is 

very close to that expected from the image force calculation of Neumcke 

and L~iuger (1969b). Thus, since the barrier we measure is close to that 

expected for the distance dependent image force, we can feel safe in con- 

cluding that the barrier height is indeed a function of position and not of 

voltage. 

We conclude therefore that the Nernst-Planck treatment with a barrier 

of the shape shown in Fig. 8 is adequate to explain the I-V curves of the 

nonactin-K + system and that the assumption of a single jump Eyring treat- 

ment of sinh (u/2) barrier is inadequate. Although this model may not be 

unique in predicting the observed results, it has the virtues of simplicity and 

physical plausibility. 
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