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7 Analysis of Neural Excitability and Oscillations

John Rinzel and Bard Ermentrout

7.1 Introduction

Qualitative features of excitable or oscillatory dynamics are shared by broad classes
of neuronal models. Expressed in models for single-cell behavior as well as for
ensemble activity, these features include excitability and threshold behavior; beating
and bursting oscillations and phase locking; and bistability and hystersis. Our goal
here is to illustrate, by exploiting a specific model of excitable membrane, some of
the concepts and techniques that can be used to understand, predict, and interpret
these dynamic phenomena biophysically. Our mathematical methods include nu-
merical integration of the model equations, graphical or geometric representation
of the dynamics (phase plane analysis), and analytic formulae for characterizing
thresholds and stability conditions. The concepts are from the qualitative theory of
nonlinear differential equations and nonlinear oscillations, and from perturbation
and bifurcation theory. In this brief chapter, we will not consider the spatiotemporal
aspects of distributed systems. Thus our methods apply directly only to a membrane
patch, to a spatially uniform, equipotential cell, or to a network with each cell type
perfectly synchronized.

Even seemingly simple models that exhibit one or two of the different dynamic
behaviors, such as generation of individual or repetitive action potentials, may dis-
play a great variety of response characteristics when a broad range of parameters is
considered. This means that a given cell or ensemble may behave in many different
modes, for example, as a generator of single pulses, as a bursting pacemaker, as a
bistable “plateauing” cell, or as a beating oscillator, depending upon the physio-
logical conditions (neuromodulator or ionic concentrations) or stimulus presenta-
tions (applied currents or synaptic inputs). The nonlinear nature of the models
provides the substrate for this broad repertoire; in contrast, linear models may be
characterized by exponential or oscillatory time courses over their entire parameter
ranges. It is important when studying a nonlinear model that stlmulus-response
properties be considered over ranges of the biophsical parameters.

In this chapter, we show that a simple, but biophysically reasonable, two-current
excitable membrane model is sufficiently robust to exhibit such behavioral richness,
as parameters are systematically varied. By adjusting channel densities, activation
dynamics, and stimulus intensities; we find that the cell. model can exhibit quite dif-
ferent threshold characteristics for spike generation (finite or infinite latency, with or
without intermediate amplitude responses) and for onset of repetitive firing (finite or
zero minimum frequency). The cell shows various types of bistable behavior: two
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different rest states, in one case, and a rest state with a coexistent osciliatory response
around a depolarized level, in another. The latter situation can provide a mechanism
for rhythmic bursting when additional slower processes (€.g., slow channel kinetics,
or a channel affected by slow ion accumulation) respond differently at the two
potential levels. Because the spike-generating dynamics significantly influence the
burst’s waveform, there can be several different types of bursting depending on the
nature of the fast dynamics; for example, parabolic bursting does not depend on
bistability in the spike-generating processes. Finally, by considering the phase-
resetting behavior for a self-oscillatory cell, we show that the response to a single
brief, arbitrarily timed, perturbing stimulus can often be used to predict phase-
locking responses to periodic stimulation, and to predict the synchronization prop-
erties of weakly coupled ceils.

The underlying qualitative structure for these behaviors will be revealed with
graphical phase plane analysis, complemented by 2 few analytic formulas. The con-
cepts we will cover include steady states, trajectories, limit cycles, stability, domains
of attraction, and bifurcation of solutions. Phase plane characteristics and system
dynamics will be interpreted biophysically in terms of activation curves, current-
voltage relations, and the like. A user-friendly program, XPP (developed by G. B.
Ermentrout) for X-windows computers allows modelers to interactively generate,
explore, and visualize most of the behaviors described here in the same spirit as an
experimental “setup.” (XPP’s numerical procedures are summarized in chapter
appendix B.) The concepts apply to higher-order systems, for which appropriate
projections of phase space, motivated by differences in time scales for certain vari-
ables, can lead to similar insights.

7.2 Models for Excitable Cells and Networks

Most models for excitable membrane retain the general Hodgkin-Huxley (HH) for-
mat (Hodgkin and Huxley 1952), and can be written in the form

C%+I,-,,,,(V, Wi,..., W) =I{t) a.1)
AW Wi(V) — Wi
“d (V) ' (7.2)

where ¥ denotes membrane potential (say, deviation from a reference, or “rest”
level), C is membrane capacity, and iy is the sum of V- and t-dependent currents
through the various ionic channel types; I(#) is the applied current. The W;(f) vari-
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ables describe the fraction of channels of a given type that are in various conducting
states (e.g., open or closed) at time r. The first-order kinetics for W, typically involve
¥ dependence in the time constant 7 ¢ is a temperature-iike time scale factor that -
may depend on i, If the current, I, for channel type j may be suitably modeled as
ohmic, then it might be expressed as '

Ij #gjaj(V: er---: Wn)(V"' Vi)’ (73)

where g; is the total conductance with all j-type channels open (product of single-
channel conductance with the total number of j channels), g; is the fraction of j
channels that are open (it may depend on several of the W, variables), and ¥ is the
reversal potential (usually Nemstian) for this ion species. For some channel types the
current-voltage relation may be more appropriately represented by the Goldman-
Hodgkin-Katz equation, or by a barrier kinetics scheme (Hille 1992), and the gating
kinetics might involve a multistate Markov description. In the classical HH model
(Hodgkin and Huxley 1952) for squid giant axon, there are three variables W, de-
noted as m, h, and n, to describe the fractions m3h and n* of open Na* channels and
K+ channels, respectively.

For some purposes, it is important that the current balance equation (eq. 7.1)
contain terms to account for ionic pump currents. These currents, as well as some
channel conductances, may depend upon time-varying second messengers or ionic
concentrations, for example, in diffusionally restricted intracellular or extracellular
volumes. For such considerations, additional variables and transport or kinetic bal-
ance equations would be included in the model, and these will carry along their own
time scales. Indeed, some models that include the dynamics of intracellular free cal-
cium bandling have assumed time constants that are orders of magnitude greater
than channel kinetics and thereby set the time scale for phenomena such as bursting
oscillations {see, for example, Chay and Keizer 1983). We also note that the form of
eq. 7.2 is not unique; in a phenomenological model of Rall (see Goldstein and Rall
1974), the corresponding equations are nonlinear in the W,

Some models for excitability contain many variables and represent numerous
channel types, especially models designed to account for rather detailed aspects of
spike shape and dependence on many different pharmacological agents. On the other
hand, if qualitative or semiquantitative characteristics of spike generation and input-
output relations are adepuate, say in network simulations, then a reduced model
having just a few variables may suffice. Such reductions can sometimes be obtained
when time scale differences allow relatively fast variables to be instantaneously
relaxed to pseudo-steady-state values; thus, if 7; is small relative to other time con-

" stants, then one might set W) = W (¥) in eq. 7.2. Likewise, functionally related
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variables with similar time scales might be lumped together. In this spirit, FitzHugh

(1960) considered reductions of the HH model (see also Rinzel 1985; Kepler, Abbott,

and Marder 1992) and then introduced (FitzHugh 1961) and idealized, analytically
tractable two-variable model {see also Nagumo, Arimoto, and Yoshizawa 1962)
widely studied as a qualitative prototype for excitable systems in many biological
and chemical contexts. A FitzHugh-Nagumo/Hodgkin-Huxley hybrid was formu-
lated and studied by Morris and Lecar (1981), in the context of electrical activity
of the barnacle muscle fiber. The model incorporates a V-gated Ca** channe] and a
V-gated, delayed-rectifier K+ channel; neither current inactivates. A simple version
of this model is represented by the equations

c %’; = Lion(V, W) +1 (14)
aw W (V) — W]

e (7.5)
where

Lon(V,w) = FeaMao(VI(V — Ves) + gxw(V — Vi) + gV — Vi) (7.6)

In egs. 7.4-7.6, w is the fraction of K* channels open, and the Ca*t channels re-
spond to ¥ so rapidly that we assume instantaneous activation. One might introduce
dimensionless variables, as in FitzHugh 1969 or Rinzel and Ermentrout 1989, in
order (1) to reduce the number of free parameters and identify equivalent groups of
parameters, and (2) identify and group “fast” and “slow” processes together. How-
ever, in the interest of clarity, we will keep all equations in their original form. In eq.
7.5, 7, has been scaled so its maximum is now one, and ¢ equals the temperature
factor divided by the prescaled maximum (14/4, in Morris and Lecar 1981). (The V-
dependent functions, Me, Weo, and 7,, and the reference parameter sets are given in
appendix A). All the computations and figures in this chapter are based on egs. 7.4-
7.6, and extensions of them for generating bursting behaviors.

Even network models in certain approximations can reduce to a few variables.
One example is the Wilson-Cowan model (1972; for another, see chapter 11, this
volume}: :

Hhe %? = ~& + S(teel — S — ) (7.7)

ds

py === + S(aub ~ i — 6), (7.8)
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Analysis of Neural Excitability and Oscillations

where & and # represent the respective firing rates of a population of excitatory and
inhibitory interneurons. The parameters 4,, 4, are the membrane time constants; &,,
0; are the firing thresholds; a,., %, ., o; are the “synaptic weights”; and S(.) is a
nonlinear saturating function similar in form to mye (V).

7.3 Understanding Dynamics via Phase Plane Analysis

While an experimenter typically can measure membrane potential, it is usually im-
possible to monitor other dynamic variables, such as ionic currents, during non-
clamped activity. For a theoretical model, we must explicitly compute the time
courses of all dependent variables; we can then compare the time courses of the dif-
ferent dynamic variables and identify their contributions and temporal relationships.
A valuable way to view the response of multiple variables and their relationship to
physiological functions at the same time is by phase plane profiles, that is, curves of
one dependent variable against another. Moreover, such plots allow us also to geo-
metrically represent and interpret aspects of the model (e.g., activation curves) along
with the response trajectories. At a glance, we can see whether the model has one or .
multiple steady states, which stimuli might invoke switching between states, and
where these steady states lie in relation to activation and current-voltage (f-1’) char-
acteristics. While the phase plane view provides a full description for two-variable
models, judicious two-dimensional projections from phase spaces of higher-order
systems can yield some of these same insights.

Phase plane analysis was used effectively by FitzHugh ({1960, 1961, 1969) to
understand various aspects of the HH equations and the two-variable FitzHugh-
Nagumo model. (FitzHugh 1969 also defines some basic mathematical terminology
of nonlinear dynamics and supplements our presentation; for additional mathemat-
ical introduction, see also Edelstein-Keshet 1988 and Strogatz 1994.)

73.1 The Geometry of Excitability

We begin by considering the Morris-Lecar model (1981), in the case that there is a
unique rest state and a thresholdlike behavior for action potential generation. Figure
7.1A shows the V' responses to brief current pulses of different amplitudes. The
peak ¥ is graded, but the variation occurs over a very narrow range of stimuli; in
this case, as in the standard HH model, the threshold phenomenon is not discrete,
but rather, steeply graded. In figure 7.1B, these same responses are represented
in the ¥-w plane. The solution path in the space of dependent variables is called a
“trajectory,” and direction of motion along a trajectory is often indicated by an
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Response of the Morris-Lecar excitable system, eqs. 7.4-7.6, to & brief current pulse. For these parameters
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(values of ¥, are shown alongside the curves in panel A). Panel A shows the time course of the voltage.
Notice that intermediate responses are possible with some stimuli: the threshold is graded; firing occuts
with finite latency. Panel B shows trajectories in the F-w phase plane; nullclines are shown dashed and in-
tersect only once. The effect of a stimulus is to displace the initial condition horizontally from rest.

¢}
¥ (mV)

Anal

shov
is 5a
zout
tion
vV, t
jectc
incre
then
spon
dow:

tions
ries.
verti

cubic
versy
V-ga
moti




- Ermentrout

tese parameters
z line w=# is
from ¥ to Vo
of the voltage.
d; firing oocurs
dashed and in-
m rest-

Analysis of Neural Excitability and Oscillations ' 257

arrowhead. In figure 7.1B, the flow is generally counterclockwise. All the trajectories
shown here ultimately lead to the rest point: ¥ = P, w =% = wa ( 7). The rest state
is said to be “globally attracting.” Each trajectory has a unique initial point, a hori-
zontal displacement from the rest point corresponding to instantaneous depolariza-
tion by a brief current pulse. A trajectory’s slope conveys the relative speed of w to
¥; thus a shallow slope means V is changing faster (see next paragraph). The tra-
jectory of an action potential shows the following features: an upstroke with rapid
increase in V (trajectory is moving rightward with little vertical component) and
then the transient depolarized plateau with the delayed major increase in w, corre-
sponding to the slower opening of K* channels. When w is large enough, the abrupt
downstroke in ¥ occurs—the trajectoxfy moves leftward, nearly horizontal, as V
tends toward Vk. Finally, as w decreases (the potassium channels close), the state
point returns to rest with a slow recovery from hyperpolarization.

In the phase plane, the slope of a trajectory at a given point is dw/dV, which is
simply the ratio of dw/dt to dV /dt, and these quantities are evaluated from the right-
hand sides of the differential equations (eqs. 7.4-7.5). (The program XPP has a
command to plot short vectors that indicate the flow pattern generated by the equa-
tions. This allows a global view of the flow without having to compute the trajecto-
ries. The program also computes nuliclines, defined next.) Thus a trajectory must be
vertical or horizontal where d¥ /dt = 0 or dw/dt = 0, respectively. The conditions

0 = ~gomea(V)(V ~ Vao) — @MV — Vi) = g1V = Vi) +1 (7.9)
0= ¢E"_°°t_(:3,—)'-‘ﬂ ) (7.10)

define curves, the ¥ and w nullclines, which are shown dashed in figure 7.1B. This
provides a geometrical realization for where V and w can reach their maximum and
minimum values along a trajectory in the V-w plane {notice how the trajectories
cross the nullclines either vertically or horizontally in figure 7.1B). The w nullcline is
simply the w activation curve, w = weo( V). The V nulicline, from eq. 7.9, corre-
sponds to ¥ and w values at which the instantaneous ionic current plus applied cur-
rent is zero; below the ¥ nullcline, V is increasing and above it, V is decreasing. The
cubic-like shape seen here reflects the N-shaped instantanéous 1-V relation, Lin(V, W)
versus V with w fixed (eq. 7.6), typical of excitable membrane models in which the
V-gated channels carrying inward current activate rapidly. From another viewpoint,
motivated by the slower time scale of w, suppose we fix w, say, at a moderate value.
Then the three points on the ¥ nullcline at this w correspond to three pseudo—steady
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states; at the low-V state, small outward and inward currents cancel while at the
high-V state, both currents are larger but are again in balance. These states are
transiently visited during the plateau phase and the return-to-rest phase of an action
potential. Notice how the trajectory is near the right and left branches of the V
nullcline during these phases.

If ¢ were smaller still, then the phase plane trajectories (except when near the V
nullcline) would be nearly horizontal (because dw/dV would be small); the action
potential trajectory during the platean and recovery phases would essentially cling
to, and move slowly along, either the right or left branch of the ¥ nullcline. The
downstroke would occur at the knee of the ¥ nullcline. The time course would be
more like that of a cardiac action potential. Also, in the case of smaller ¢, the
threshold phenomenon would be extremely steep; the middle branch of the ¥ null-
cline would act as an approximate separatrix between sub- and superthreshold initial
conditions. In contrast, for larger ¢, the response amplitude is more graded. This
theoretical conclusion led Cole, Guttman, and Bezanilla (1970) to demonstrate ex-
permmentally that, at higher temperatures, the action potential for squid axon does
not behave in an ali-or-none manner,

We note that phase plane methodology applies to autonomous systems, whose
equations have no explicit time dependence and whose nullclines and flow field
therefore do not change with time. (This would not be the case if, for example, /
were periodic in f; periodic stimuli will be covered later.) The phase plane method
extends, however, to cases where a step change in a parameter occurs. At the time a
parameter’s value jumps, the nullclines would change instantaneously, but not the
present location of ¥ and w. FitzHugh (1961) uses this trick to interpret anodal
break excitation, and Somers and Kopell (1993) have used this to analyze the be-
havior of coupled Morris-Lecar oscillators when ¢ is very small.

7.3.2 Oscillations Emerging with Nonzero Frequency

In the phase plane treatment, the rest state of the model is realized as the intersection
of the two nullclines; such steady-state solutions are also referred to as singular or
equilbrium points. From the geometrical viewpoint, one sees how different parame-
ter values could easily lead to multiple singular points—by changing the shapes and
positions of the nullclines. In figure 7.1, the unique singular point is attracting.
Technically, we say it is asymptotically stable, that is, for any nearby initiat point the
solution tends to the singular point as ¢ — 0. In general, the local stability of a sin-
gular point can be determined by a simple algebraic criterion {Edelstein-Keshet
1988; Strogatz 1994). The procedure is to linearize the differential equations, eval-
uate the partial derivatives at the singular point (this matrix of partial derivatives is
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called the Jacobian), and to determine whether the exponential solutions to this
constant coefficient system have any growing modes. If so, then the singular point is
unstable; if all modes decay, then it is stable. For eqs. 7.4-7.6, the linearized equa-
tions that describe the behavior of small disturbances, V' ~ ¥V +x, w = # +y, from
the singular-point are '

%:ax-t-by ' | (7.11)
% = ex + dy, _ - (7.12)
where

- _Qﬁﬂﬁgﬁ’l (7.13)
b= —%"%gf-"l (7.14)
c= T% “% (7.15)
d= ._.t%_ ' (7.16)

Solutions are of the form exp(4,?), exp{A2f), where A;, are the eigenvalues of the
Jacobian matrix in eqs. 7.11-7.12; they are roots of the quadratic

22— (a+d)A+ (ad — bc) = 0. (7.17)

For the parameters of figure 7.1, the two eigenvalues are both real and negative.

As parameters are varied, the singular point may lose stability. In our example,
the rest state could then no longer be maintained and the behavior of the system
would change—it may fire repetitively or tend to a different steady state (if a stable
one exists), Let us consider the effect of a steady applied current and ask how repeti-
tive firing arises in this model, We will apply linear stability theory to find values of J
for which the steady state is unstable. First, we note that for egs. 7.4-7.6, and for
nerve membrane models of the general form of egs. 7.1-7.2, a steady-state solution
¥ for a given I must satisfy I = I,(¥), where I,(V) is the steady-state I-} relation
of the model given by
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IH(V) =Ifoﬂ(V:ww(V)) (7'18)

If I is N-shaped, there will be three steady states for some range of 1. If however, Iy
is monotonic increasing with ¥, as in the case of figure 7.1, then there is a unique 7
for each I; moreover, (¥, #) cannot lose stability by having a single real eigenvalue
pass through zero. Destabilization can only occur by a complex conjugate pair of
eigenvalues crossing the axis Red = 0 as I is varied through a critical value I;. At
such a transition, a periodic solution to egs. 7.4-7.6 is bomn-—and we have the onset
of repetitive activity. This solution, for 7 close to Ii, is of small amplitude and fre-
quency proportional to fmmA. Emergence of a periodic solution in this way is called a
Hopf bifurcation (Edelstein-Keshet 1988; Strogatz 1994).

From egs. 7.11-7.12, or eq. 7.17, we know that A, + i; = a + d. Thus loss of

stability occurs for the I whose corresponding ¥ satisfies

oV, W) ¢
=0 (7.19)

The first term here is the slope of the instantaneous /-V relation and the second is
the rate of the recovery process; this condition also applies approximately to the HH
model (Rinzel 1978). From eq. 7.19 we conclude that loss of stability occurs: (1)
only if the instantaneous I-V relation has negative slope at V; (2) when the destabi-
lizing growth rate of ¥ from this negative resistance just balances the recovery rate;
and (3) only if recovery is sufficiently slow, i.e. if ¢ is small (low “temperature”). In
figure 7.2A, ¥ is plotted versus I (this is the steady-state I-V relation, but shown as
V against I) and the region of instability is shown dashed.

Figure 7.2A also shows the maximum and minimum values of ¥ for the oscil-
latory response. Just as a singular point can be unstable, so, too, can a periodic
solution (Strogatz 1994); unstable periodics are indicated by open circles. Here we
see that the small amplitude periodic solution born at 7 = I; = 93.85 pA/cm? from
the loss in stability of ¥ is itself unstable; it would not be directly observable. (In the
phase plane, but not generally for higher-order systems, an unstable periodic orbit
can be determined by integrating backward in time.) Note that solutions along this
branch depend continuously on parameters and they gain stability at the turning
point or knee at / = I, = 88.3 uA /cm?. A stable periodic solution is catled a “lmit
cycle.” The upper branch (solid) corresponds to the limit cycle of observed repetitive
firing. The frequency increases with I over most of this branch (figure 7.2B). At suf-
ficiently large I, repetitive firing ceases (depolarization block) as ¥ regains stability at
I =L =212pA/cm?. This figure is referred to as a “bifurcation diagram”; it depicts
steady-state and periodic solutions, and their stability, as functions of a parameter
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and it shows where one branch bifurcates (from the Greek word for branch) from
another, Bifurcation theory allows one to characterize solution behavior analytically
in the neighborhood of bifurcation points; for example, the frequency of the emer-
gent oscillation at the Hopf point is proportional to |ImA12|. When the Hopf bi-
furcation leads to unstable periodic solutions, i.e.,, when the emergent branch bends
back into the parameter region where the steady state is stable, then the bifurcation
is subcritical (i.e., a hard oscillation); if the opposite occurs, it is supercritical,

For a range of I values (between the knee, I, and the Hopf bifurcation, f;), our
model exhibits bistability: a stable steady state and a stable oscillation coexist. Figure
7.3A illustrates the phase plane profile in such a case; a periodic response here ap-
pears as a closed orbit. There is a stable fixed point shown as the intersection of the
two nullclines and a stable periodic orbit (labeled SPO). The two attractors are sep-
arated by an unstable periodic orbit {(UPOQ). Initial values inside the unstable orbit
tend to the attracting steady state, while initial conditions outside of it will lead to
the limit cycle of repetitive firing. A brief current pulse, whose phase and amplitude
are in an appropriate range, can switch the system out of the oscillatory response
back to the rest state. Such behavior has been seen for many models and observed, for
example, in squid axon membrane (Guttman, Lewis, and Rinzel 1980). In figure 7.3B,
two 30 pA /em? current pulses 5 msec in duration are given, at ¢ = 100 msec and then
at t = 470 msec. The first pulse switches the membrane from rest to repetitive firing,
while the second pushes the membrane back to rest. This bistable behavior is critical
for the occurence of bursting oscillations when a very slow conductance is added to
the model.

7.3.3 Oscillations Emerging with Zero Frequency

The Hopf bifurcation is one of a few generic mechanisms for the onset of oscillations
in nonlinear differential equation models. In that case, the frequency at onset of
repetitive activity has a well-defined, nonzero minimum. In contrast, some membranes
and models (see, for example, Connor, Walter, and McKown 1977} exhibit zero (i.e.,
arbitrarily low) frequency as they enter the oscillatory regime of behavior; Rall’s
model (Goldstein and Rall 1974) also behaves this way. A basic feature in such sys-
tems is that f,, versus ¥ is N-shaped rather than monotonic, as in the previous sec-
tion. For egs. 7.4-7.6, this occurs if the ¥ dependence of K™ activation is translated
rightward (see appendix A, and note value of ¥3), so that the inward component
of I, dominates over an intermediate V range. Thus, for some values of I, below
the repetitive firing range, there are three singular points in the phase plane and the
system is excitable. We discuss this case first. In figure 7.4B, we see the nullclines
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Bistability for steady current
parameters as in figure 7.1 and

near the threshold for repetitive firing for the Morris-Lecar model with
I == 90 pA /cm’. In this region, where 7 is between the first Hopf bifurca-
tion point, [;, and the “knee,” J,, there are two stable states (cf figure 7.2): a rest state (the imemectiog c_)f
the nullchines) and a stable oscillation {SPO) scparated by an unstable periodic solution (UPO). This is
shown in pane! A. Panc! B demonstrate switching from rest to oscillation and then back to rest for two

brief appropriately timed depolarizing current pulses.
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current pulse from the stable rest state. Four different stlmuh.rcsult in a displacement of ¥ from (3
{values gf ¥y are given alongside the curves in panel A). (A) Time course of the voltage for I = 30 pA/em”.
(B) Phase plane for the dynamics illustrated in panel A, Nullclines intersect at three places: {1) R a stable

T. & saddle point threshold, and (3) U an unstable node. The thick so].ic} lme shows the un-
:et:;femmamfte, ('Z)old,for the saddlepm point; h:e’, unstable refers to movement in opposing directions away from
T (indicated by arrowheads), The manifold’s two branches lead to the stable rest state and form & smooth
loop in phase space. The heavy dashed line shows the :ta.ble mann:old for the saddle point (arrowheads_ ®
pointing toward T). Any initial conditions to the left of this manifold decay to rest. Initial conditions
mlherightlwdmnﬁaeﬁonpotenﬁalbefmremmgbmt?mmctcrsmasmﬁgmell,mpt
dco = 4mS/em?, V3 = 12mV, Vi =174mV, ¢ = 1/15.
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intersecting three times. As determined by linear stability theory, the singular points
are the stable rest state (R), and unstable saddle point threshold (T), and an un-
stable spiral (U). The system is excitable, with the lower state being a globally
attracting rest state: initial conditions near R lead to a prompt decay to rest, while
larger stimuli lead to an action potential—a long trajectory about the phase plane.
The phase plane portrait moreover reveals that this case of excitability indeed has a
distinct threshold which is due to the presence of the saddle point, T. To understand
this, we note that associated with the saddle are a unique pair of incoming trajecto-
ries (bold dashed lines) corresponding to the negative eigenvalue of the Jacobian
matrix; together, these represent the stable manifold. Corresponding to the positive
eigenvalue are a pair of trajectories {bold lines) that enter the saddle as ¢ — —o0;
these are the unstable manifold. (XPP has a command that generates these mani-
folds.) The stable manifold defines a scparatrix curve in the phase plane that sharply
distinguishes sub- from superthreshold initial conditions. For initial conditions near
the threshold separatrix, there is a long latency before a firing or decaying sub-
threshold response (see figure 7.4A). This is because the trajectory starts close to (but
not exactly on) the stable manifold and thus the solution comes very neax the saddle
singular point (where it moves very slowly) before taking off. If w is started at rest,
wg, then there is a unique value of ¥V = Vr (between —22.1 and —22.2mV in the
present example) called the “voltage threshold,” where the stable manifold intersects
the line w = wg.

The action potential trajectory follows along the unstable manifold (bold lines),
which passes around the unstable spiral and eventually tends to the rest point. Such
a trajectory joining two singular points is called a “heteroclinic orbit.” The other
branch of the unstable manifold is also 2 heteroclinic orbit from the saddle to the
rest point. This heteroclinic pair forces any trajectory that begins outside it to remain
outside it—thus preserving the amplitude of the action potential. In this case we do
not find graded responses for any brief current pulses from the rest state.

This case also provides a counterexample to the common misconception that if
there are three steady states, then the “outer” two are stable, while the “middle” one
is unstable. In fact, in some parameter regimes this model has three singular points,
none of which is stable.

Next, we tune up 7 and ask when repetitive firing occurs. Because I is N-shaped,
we know that the lower and middle values of ¥ move toward each other as I in-

creases, and there is a critical value 7; where they meet. In the phase plane, this
means that the rest point and the saddle coalesce and then disappear; this is called a
“saddle node bifurcation.” Moreover, the heteroclinic pair become a single closed
loop, & limit cycle, which for I just above I bas very long period {figure 7.5). Thus,
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Onset of repetitive firing with arbitrarily low frequency for a constant current, [ = 40.76 p.A/an" shows an
oscillation with a period of about 220 msec. Panel A shows the voltage time course and pancl B shows the
phase plane. Note the “narrow channel” between the two nuliclines near —30mV, which accounts for
most of the oscillation period (see Rinzel and Ermentrout 1989). Parameters are as in figure 7.4.
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in this parameter regime, the transition to repetitive firing is marked by arbitrarily
low frequency (figure 7.6B). For I near the critical current, the frequency is propor-
tional to /7 — Ij (Strogatz 1994). When I = I, the limit cycle has infinite period; it
is called a-““saddle node loop” or SNIC (saddle node on an invariant circle). Gen-
erally, an infinite period limit cycle is called a “homoclinic orbit,” one that begins
and ends at a singular point, The saddle node loop is one type of homoclinic orbit;
we will encounter another type in the next section. This type of zero-frequency onset
is generic and occurs over a range of parameters. Changing another parameter will
typically lead to a smooth change in J;. We emphasize that this mechanism allows
arbitrarily low firing rates without relying on channel gating kinetics, which are nec-
essarily slow. Such low rates have been associated with the inactivating potassium
A-type current (Connor, Walter, and McKown 1977), although the underlying
mathematical structure of the saddle node loop does not, of course, require an
A-current (Rush and Rinzel 1995). We have found the fast spike dynamics in several
recent models (e.g., Traub et al. 1991) for cortical pyramidal cells to have this same
zero-frequency onset of repetitive firing (unpublished observations by the authors).
The value /) is determined by evaluating I, at the value of ¥ for which 01,/ = 0,
and this latter condition is equivalent to having the determinant ad — bc of the
Jacobian matrix equal zero,

The global picture of repetitive firing is shown in the bifurcation diagram of figure
7.6A, with frequency versus I in figure 7.6B. The branch of steady states (unstable
shown dashed) form the S-shaped curve, and the oscillatory solutions are represented
by the forked curve whose open end begins at [ = J;. As I increases beyond J; the
peak-to-peak amplitude on the stable (repetitive firing) branch decreases and the fre-
quency increases, The family of periodic solutions terminates at I = I, via a sub-
critical Hopf bifurcation. Except for I in a small interval of this upper range, this
system is monostable. Annihilation of repetitive firing, as in figure 7.3, cannot be
carried out for J near /) in this case {although at the high-current end where there is
bistability, annihilation can occur),

7.3.4 More Bistability

It is important to realize that the solution behavior we have described in our
bifurcation diagrams depends on other parameters in the model. The temperature
perameter ¢ is particularly convenient, with useful interpretative value for additional
parametric tuning: it plays no role in I, and thus does not affect the values along the
S-shaped curve of steady states in figure 7.6, or the corresponding curve in figure 7.2.
The stability of a steady state does, however, depend on #. As is seen from eq. 7.19,
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Multiple steady states and periodic orbits for a steady current when the I.—V relation is N-shaped. (A)
Bifurcation diagram (line types as in figure 7.2A; parameters are as in figures 7.4-7.5). In spite of the
coexistent states, the system is monostable for I between I = 40, the turning point of the stcady states,
and [; = 98 where there is a Hopf bifurcation. Onset of repetitive firing at zero frequency occurs at I = I
where two fixed points coalesce. This corresponds to figure 7.4B when the unstable manifolds of the saddle
point form a closed loop. The branch of periodic orbits has a turning point at 7 = 116 before terminating
2t the Hopf bifurcation point, f = k. All current valucs in pA/em’. (B) Frequency (in Hz) of stable
branch of periodic orbits.
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Bifurcation diagram (as in figure 7.6 but for ¢ = 0.23). Point A shows where the two lower steady states
coalesce, point B shows the Hopf bifurcation for the upper sicady state, point C shows the coalescence
of the stable and ungtable periodic point D shows where the branch of stable oscillatory
solutions wrminatuonthebrmckofuddlepoinu(notontlwknee, &s in figure 7.6) at a saddle loop
homoclinic. For currents between points B and A, there are three stable states: (1) a low-voltage rest state,
(2) a high-voltage rest state, and (3) an oscillatory state. Note that the steady-state branch is identical 10
that of figure 7.6; ¢ only affects the stability of the steady states and the behavior of the periodic orbits,
Vertical line at I = 37.5 A Jem? shows a current for which there are three stable states (cf. figure 7.8).

when ¢ is large, oscillatory destablization is precluded; Hopf bifurcation from a
steady state only occurs when the time scale of w is slow compared to that.of V.
Thus, for large ¢, both the upper and lower branches of the S-curve are stable; the
middle branch is of course unstable. This system is bistable. In this large-¢ limit, the
kinetics of the K* system are so' fast (essentially instantaneous, with w = We (V)
that the model reduces to one dynamic variable, #. Then stability is determined
only by the slope of I, with. the two “outer” states being stable and the “middle”
unstable. This simple example also shows that sometimes 2 model can be con-
veniently reduced to a lower dimension when there are significant time scale differ-
ences between variables.

For intermediate values of ¢, the dynamics of both ¥ and w influence stability,
and the upper branch is unstable for a certain range of J. Figure 7.7 shows a bi-
furcation diagram analogous to that in figure 7.6A, in which the branch of steady
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states is S-shaped and the stable rest state disappears at a turning point (point A).
The high voltage equilibrium is stable for large currents but, as the current is re-
duced, loses stability at a subcritical Hopf bifurcation (point B). An unstable branch
of periodic solutions emanates from the Hopf bifurcation point and then becomes
stable at a turning point (C). Unlike figure 7.6A, however, this branch of stable pe-
riodic orbits (solid circles) does not terminate on the knee (point A) but instead on
the unstable middle branch (point D on the diagram) as the current decreases to a
critical value, Ip. Again the frequency of the limit cycle tends to zero for this branch,
but not as the square root. Rather, the frequency is proportional to 1/[log( — Ip)]|
(Strogatz 1994). At the critical value of current, Ip, the closed orbit has infinite
period; it is called a “saddle loop homoclinic orbit.” Recall that the middle branch
of solutions is a saddle point. One branch of the unstable manifold of this saddle
point exits the singular point and returns via a branch of the stable manifold (com-
pare figure 7.8A) and contrast this with the saddle node loop homoclinic in figures
7.4-7.6). For certain values of the current, this system is ¢ristable, that is, it has three
stable states. If 7 is chosen to lie between the I values for points B and C, then the
lower branch still exists and is stable, the upper branch of equilibria is stable, and
there is a stable periodic orbit, Figure 7.8A shows the phase plane for this case. The
stable manifold for the saddle point (bold dashed trajectory} acts to separate the
stable periodic orbit (SPO) from the lower rest state. The small unstable periodic
orbit (UPQ) separates the upper rest state from the stable periodic solution. As in
figure 7.3B, we can use brief current pulses to switch between states. Figure 7.8B
shows the effect of three 5msec current pulses switching from the periodic orbit to
the lower rest state, back to the periodic orbit, and then to the upper rest state. (Note
that perturbations from the upper rest state decay very slowly.) The HH model,
adjusted for higher than nommal external potassium, exhibits similar multistable
behavior {Rinzel 1985).

This example of coexistence between a depolarized limit cycle and a lower resting
state is important because it also forms the basis for a general class of bursting
phenomena.

7.4 Bursting and Adaptation: Spiking Dynamics with Slow Modulation

Many neurons exhibit much more complicated firing patterns than the simple repeti-
tive firing we have described here. Bursting, the clustering of spikes followed by rel-
ative quiescence, is a common mode of firing in neurons and other excitable cells (see
Wang and Rinzel 1995 for a brief review). Bursting cannot happen in two-variable
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Multistability for a current between points B and A in figure 7.7 {f = 37.5uA /em?; other parametets are
as in figure 7.7). Pane! A depicts the V-w phase plane. The nuliclines intersect at three places representing
steady states: (1) a lower stable rest state (R), (2) an unstable saddie point (T), and (3) an upper stable rest
state (ualabeled), The left branch of the unstable manifold of the saddle point (bold line) connects to the
lower steady state. The tight branch wraps around the stable periodic orbit (SPO). The branches of the
stable manifold of the saddie point (bold dashed line) form separatrix between the lower stable regt state
and the stable periodic orbit, The unstable periodic orbit (UPQ) separates the stable upper steady state
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models. The slow modulation of spiking during a burst requires additional bio-
physical mechanisms and dynamic variables. Moreover, just from mathematical con-
siderations, a slowly drifting spike trajectory that recurs would violate the rule that
trajectories in the phase plane cannot cross. By adding a slow process to our ideal-
ized two-variable model, however, we can use it to understand bursting from a sim-
ple geometric point of view. In this treatment, a slow variable is first viewed as a
parameter to describe the behavioral regimes of the fast spike-generating kinetics;
the slow dynamics are then overlaid as the fuil system sweeps through regimes of
spiking and quiescence. Unless we state otherwise, bursting for us will imply repeti-
tive bursting.

74.1 Square-Wave Bursters

Consider in figure 7.7 the 7 interval between A and D. There is a stable rest state
around -35mV and a stable (more depolarized) limit cycle. Suppose the current J
slowly varies back and forth across this interval. Then because of the bistability, a
hysteresis loop is formed, in which the membrane is alternately at rest and alter-
nately firing repetitively. Such a loop provides a simple mechanism and geometric
interpretation for square-wave bursting. Because the current [ is externally imposed,
however, this is forced rather than autonomous bursting. To achieve autonomous
bursting, one could (as in Rinzel and Ermentrout 1989) redefine I as a dynamic de-
pendent variable in such a way that 7 decreases when the membrane is depolarized
and firing repetitively, and I increases when the membrane is resting. Although arti-
ficial, this example demonstrates the basic principle that (very) slow negative feedback
and hysteresis in the fast dynamics underlie square-wave bursting. Many different
ionic current mechanisms could likewise produce the slow negative feedback. For
further illustration, we employ a calcium-dependent potassium current, analogous to

that studied by others {see Wang and Rinzel 1995). We assume the current activates

instantaneously in response to calcium and that the calcium-handling dynamics are
slow. Thus we add to eq. 7.6 the current Jx_¢, given by
Ix_ca = gr-ca:(V — Vi), ] (7.20)

where gg_c, is the maximal conductance for this current and z is the gating variable
with a Hill-like dependence on Ca (the near-membrane calcium concentration scaled
by its dissociation constant for activating the gate, Kp):

Ca? '
T (7.21)

z=
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{For simplicity, we set the Hill exponent p = 1, although this is not required.} The
balance equation for Ca is

48 _ ol - Ca), | (7.22)

where the parameter u is for converting current into a concentration flux and in-
volves the ratio of the cell’s surface area to the calcium compartment’s volume. The
parameter ¢ is a product of the calcium removal rate and the ratio of free to total
calcium in the cell. Because calcium is highly buffered, ¢ is small and thus the cal-
cium dynamics are slow. This is a greatly simplified model; one could have, for
example, more complicated caicium handling, including diffusion of calcium in the
cytoplasm, nonlinear removal of calcium by pumps/exchangers, perhaps even release
of calcium from intracellular pools. If the conductance gg_c,+ of this outward cur-
rent is large, the membrane is hyperpolarized; if it is small, then the membrane can
fire. Thus, when a bifurcation curve is drawn as a function of this conductance, it is
reversed from that of figare 7.7, which plots the behavior as a function of an inward
current. When the membrane is firing, intracellular calcium slowly accumulates,
turning on this outward conductance and thereby terminating the firing. Figure 7.9A
shows a bursting solution to the three-variable model, eqs. 7.4-7.6 coupled with the
slow calcium dynamics, eq. 7.22. Projecting the solution onto the z-7” plane, where z
is defined in eq. 7.21, shows how the burst’s trajectory slowly tracks the attracting
branches of the fast subsystem (figure 7.9B). Rapid transitions occur when the
branches terminate at bifurcation points and turning points. We note that any num-
ber of alternate mechanisms could provide the slow negative feedback for bursting
including a slow gating kinetics for z with fast calcium handling, or slow inactivation
of Icg, driven by V or Ca.

7.4.2 Chaos and Poincaré Maps

We emphasize that even our minimal three-variable model exhibits the complex
dynamics of bursting oscillations, Moreover, because of its simplicity and the geo-
metric viewpoint we offer, the role of each variable is clear; V' and w are for fast spike
generation with bistability, and Ca provides the slow modulation. Finally, the model
is sufficiently robust that in certain parameter ranges, it appears to exhibit chaotic
behavior. Increasing the Kp for the calcium-dependent potassium conductance,
equivalent to decreasing y, can switch the membrane into a repetitively firing regime.
‘The transition between the bursting and repetitive regimes is very complicated. For
example, when z = 1/59, the burst pattern has period 4, that is, every fourth burst
is the same, When g = 1/60, behavior is aperiodic (time course not shown); its
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Bursting solution to eqs. 7.4-7.6 coupled with the calcium-dependent potassium current, eqs, 7.20-7.22.
Parameters are as in figure 7.7, with [ = 45pAfom?, £ = 0.005, 4 = 0.2, gx_g, = 0.25mS/cm®. Panel A
shows the voltage trace (use mV for ordinate scale) and the calcinm concentration (for plotting clarity,
the dimensionless Ca values have been muitiplied by ten; ordinate scale is unitless in this case). The burst's
active phase ends when calcium rises too high and the membrane hyperpolarizes. During the silent phase
calcium is removed and afier the calcium-dependent potassiur current diminishes enough the membrane
depolarizes to initiate the next burst. Panel B shows the projection of the bursting solution on the z-¥
plane along with the bifurcation diagram with z = Ca/(l + Ca) as a parameter. The trajectory alternately
tracks the stable periodic solution (SPO in figure 7.8A) and the jower steady state. Pancl C shows that for
a slightly different value, u = 0,01667, the solution is chaotie; data points plot the value of caicium at
successive times as the voltage decreases through 0 mV. The solid diagonal line is the identity function.
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dynamics can be described as follows. Fach time that ¥ passes a given value (here
when ¥ decreases through 0mV), we record the concentration of calcium, as well as
the value of w. For this particular model, the recorded values of w are all about 0.35.
The value of calcium, however, varies between 1.56 and 1.73. The solution is ap-
proximately represented by the time series of values for the calcium, Ca,, Cas,... We
can generate the one-variable dynamic rule whose solutions approximate these time
series as follows. With initial conditions ¥ = 0 and w = 0.35, we specify a value for
calcium, and then integrate the full differential equations unti! ¥ crosses 0, again
getting the next value of calcium, Thus we have a map taking a value of calcium, Cg,
to a new value of calcium, F(Ca). This map is called a “Poincaré map.” The entire
dynamics of our burster are captured by this simple map. For # = 1/60, this map is
shown in figure 7.9C. From the figure, it is evident that there is an intersection of the
liney=xand y= F(x). That means that there is a single concentration of calcium,
Ca*, to which the trajectory returns after one cycle. This corresponds to a pericdic
solution to the model equations. If |F'(Ca*)| > 1 (as is the case here), the periodic
solution is unstable. This type of map is characteristic of dynamics that have chaotic
behavior, that is, the successive values of calcium appear to be random and aperiodic.
By reducing the three-dimensional differential equation to a simple one-dimensional
iteration, we can understand the essence of the transition from constant repetitive
firing to chaos as we vary a parameter, say u. (More details on one-dimensional




276 Rinzel and Ermentrout

maps and chaos can be found i Glass and Mackey 1988; for an application to a
neuronal bursting system, see Hayashi and Ishizuka 1992.)

7.4.3 [Elliptic Bursters

Bursting that differs from the square-wave pattern above can arise from slow modu-
lation of bistable fast dynamics because bistability can arise in a number of ways.
Consider a parameter regime for eqs. 7.4-7.6 in which the onset of oscillations is via
a subcritical Hopf bifurcation, such as shown in figures 7.2 and 7.3. As for the
square-wave burster, there is a regime where the spike-generating dynamics are bi-
stable; a limit cycle and a fixed point coexist, although, unlike the bistability shown
in figure 7.7, the limit cycle “surrounds” the fixed point. Figure 7.10 shows an
example of an “elliptic burst” pattern generated when the fast dynamics of figures
7.2 and 7.3 are coupled with the slow calcium-dependent potassium current used in
the previous bursting model (eq. 7.22). In figure 7.10A, the envelope of the spikes is
“e]liptical” in shape as the amplitude gradually waxes and wanes. The silent phase is
characterized by damping and growing oscillations as the trajectory slowly drifts
through the Hopf bifurcation of the fast subsystem. This type of activity pattern has
been seen in sleep spindles, and a cellular model related to it involves the same
mathematical mechanism (Destexhe, McCormick, and Sejnowski 1993; see also
Wang and Rinzel 1995, and Rush and Rinzel 1995). As with a square-wave burster,
this type of bursting can also have complex dynamics such as quasi-periodic be-
havior and chaos.

7.4.4 Parabolic Bursting: Two Slow Processes

Bursting can arise even without bistability in the spike-generating dynamics. Mini-
mal models for the most widely known endogenous cellular burster, the Aplysia R-15
neuron, operdte in a regime where the fast dynamics are monostable { Rinzel and Lee
1987). Suppose the spiking dynamics are as in figures 7.4-7.6, where the onset of
repetitive firing is through a saddle-node-loop bifurcation and there is no bistability.
(Ignore the bistable behavior at high currents. We are interested in the low-current
regime only, where the rest state is more negative than —30mV.) The mechanisms
for bursting that depend on one slow variable cannot produce bursting in this
parameter regime because there is no longer a hysteresis loop. A model with a single
slow variable interacting with these fast dynamics will, in response to a steady input,
slowly approach a maintained state of repetitive firing or rest. The slow transient
phase for a depolarizing input could show increasing or decreasing activity depend-
ing on whether the slow variable provides positive or negative feedback. Figure
7.11A illustrates that Jx.c, with slow Ca dynamics provides 2 mechanism for adap-
tation in repetitive firing bebavior.
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Figure 7.10

Elliptic burster formed when the Morris-Lecar model, equations 7.4-7.6 in the parameter regime of figure
72, is coupled to the calcium: ndent potassivrn current, equations 7.20-7.22. Parameters are as
in figure 7.2, with [ = 120pA/em’, g =0.3, £ =0.002, gr-c, = 0.75mS/cm®, Panel A shows the time
courses of voltage and calcium {ordinate scales as in figure 7.94), As in figure 7.9, when the calcium is
high and the calcium-dependent potassium channel is activated, the membrane tends toward rest; when
calcium is low enough, it is oscillatory. Panel B shows the projection of the burst on the z-¥ plane as in
ﬁsure'l.9B.Duﬁmtbcmﬁwandaihntphuu,theburﬂh&ctowdowlyhncha&mctomofthcfm
Subaystem.Acmﬂydmmhmphawdmeﬂmmmmjmwdﬁfmmmmﬂnmble
regime of the fast subsyster’s rest state (left of the Hopf point, z < 0.5), and this feature i explainable.




0 1000 2000 3000 4000 5000 6000 7000 8000
t (msec)

Figure 7.11
Modulation of the Morris-Lecat model, equations 7.4-7.6 in the regime of figure 7.4, by slower processes.

Panel A shows how coupling with the calcium-dependent potassium current, eqs. 7.20-7.22, results in
adaptation to a long current pulse. Parameters are as in figure 7.4, with gx-ce = 1 mS/cm?, 4 = 0.025,
¢ = 0.0005. The current pulse is 70 pA/cm®. The membrape initially fires repetitively at 17 Hz and even-
tually stows to 3 Hz, more than a fivefold decrease. Panei B sbows that a parabolic burster is formed b;
adding an additional slow inward current governed by cq. 7.23 with [ = 63 pAfam?, geg. = ImS/em®,
'z, = 0.05msce. Other parameters are as in panel A. This plot shows the membrane potential and the di-
mensionless calcium concentration 2s functions of time {ordinate scales as in figare 7.9A). For plotting
convenience, Ca has been multiplicd by ten. Pancl C shows the projection of the burst onto the z-5 pianc.
The dashed line is the curve of saddle-node-loop bifurcations of the fast dynamics, viewing s and z a3
parameters. Above this line, the membrane is oscillatory; below it, there is only a stable rest state.

Analysis of N¢

025 ———o

015 F

005

Figure 7.11 (cor

To obtain
another slow
catalytic} an
current to th
rent slowly a
on the slow
for the slow
repeats. Thu
produce slov
firing regime
able with an
Rinzel and I
and Carrillo

To illustrz
onlyaddas
an additiona

fcas = geass

where



Analysis of Neural Excitability and Oscillations

025 — , ' .
02} | ]
015 | I ]

o1} o ]

0.05 - -4-----’-'--'-’-- ‘ |

0 i
0.5 0.55 0.6 - 0.65 0.7
Figure 7.11 (continued)

To obtain the slow oscillation that underlies parabolic bursting, we need yet
another slow variable so that there are opposing influences of slow positive (auto-
catalytic) and slow negative feedback. Suppose, therefore, that we add a slow inward
current to the model, which means there are two slow variables, As the inward cur-
rent slowly activates, it causes the membrane to fire repetitively; this, however, turns
on the slow outward current, which then shuts the membrane down. If the threshold
for the slow inward current is low enough, it can start up once again and the process
repeats. Thus a combination of a slow outward current and slow inward current can
produce slow oscillations that move the fast dynamics into and out of the repetitively
firing regime. The generality of this mechanism for parabolic bursting {also realiz-
able with an inward current that slowly activates and then slowly inactivates, as in
Rinzel and Lee 1987) has been described by a number of authors (e.g., Baer, Rinzel,
and Carrillo 1995).

To illustrate with the Morris-Lecar model (that includes Ix.¢, as above), we need
only add a slow autocatalytic process. With considerable freedom of choice, we add
an additional slowly activating calcium current:

ICa,.r = gCaJS(V — VC‘,),

where
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T % = &e{so(V) — 5). (7.23)

For simplicity, we have chosen 7, = 0.05 as a constant and
500 (V) = 0.5[1 + tanh({V — 12)/24].

Figure 7.11B shows the voltage trace of the burst pattern. Note how the interspike
interval is relatively longer at the beginning and end of each burst. Figure 7.11C
shows the projection of the two slow gating variables, s and z, during a burst. The
dashed line represents the boundary between fixed points and oscillation for the fast
dynamics when the slow variables are held fixed; it is where the saddle-node-loop
bifurcation occurs. Above this line, the fast dynamics are oscillatory and below it,
there is a unique stable fixed point.

We have shown how modulating the various types of fast dynamics with one or
two slow processes leads to simple mechanisms for generating several different types
of bursting oscillations. This geometric viewpoint lets us dissect the mechanisms that
underlie some complex neuronal bursting dynamics. Other factors can contribute to
burst rhythmogenesis including cable properties and spatially nonuniform channel
densities, and nonlinear regenerative factors in the calcium handling system {cf.
Wang and Rinzel 1995).

7.5 Phase-Resetting and Phase-Locking of Oscillators

We now turn our attention to a brief description of periodically forced and coupled
neural oscillators. The behaviors generally involve issues that are very difficult to
analyze and we will only touch on them briefly. Before treating a specific example, it
is useful to discuss certain important aspects of oscillators. We say that a periodic
solution to an autonomous (time does not explicitly appear in the right-hand side)
differential equation is (orbitally) “asymptotically stable” if perturbations from the
oscillation return to the oscillation as ¢ — co. The difference between asymptotic
stability of an oscillation and that of a steady-state solution is that, for the oscil-
lation, the time course may exhibit a shift. That is, we do not expect the solution of
the perturbed oscillation to be the same as the unperturbed; rather, there will be a
shift (see figure 7.12A) due to the time translation invariance of the periodic solution.
Indeed, in phase space, the periodic trajectory is unchanged by translation in time.
The shift that accompanies the pertarbation of the limit cycle can be exploited in
order to understand the behavior of the oscillator under external forcing. Suppose
that an oscillator has a period, say T. We may let £ = 0 correspond to the time of
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A(9)

Figure 7.12 :

Phase-resetting of 2 Morris-Lecar oucillator. (A) A bricf depolarizing stimulus can shorten the onset of the
next spike and thus advance the phase. (B) Phase response curve (PRC} for the Morris-Lecar equations
with parameters ag in figures 7.4-7.6 and an applied current 7 = 50 pA /cm®. The stimulus is & 0.5 msec
m wgth amplitude of +480 pA/em? delivered at time ¢ == 40msec. The solid line shows the PRC for a

sﬁmnhumdthedamedforahypmpolm‘zingpuln The cross on the depolarizing PRC cor-
responds to the experiment in figure 7,13.
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peak value of one of the oscillating variables, so that at r = T we are back to the
peak. Given that we are on the periodic solution, if some ¢ is specified, then we know
precisely the state of each oscillating variable. This allows us to introduce the notion
of phase of the periodic solution. Let § = t/T define the phase of the periodic solu-
tion so that 6 =0,1,2,... all define the same point on the periodic solution. For ex-
ample, if & = 8.5, then we are halfway through the oscillator’s ninth cycle.

7.5.1 Phase Response Curves

With the notion of phase defined, we now examine how a perturbation shifts the
phase of the oscillator. In figure 7.12A, we show the voltage time course for the
Morris-Lecar system in the oscillating regime. At a fixed time, say f, after the voltage
peak, we apply a brief depolarizing current pulse. This shifts the time of the next
peak (figure 7.12A) and this shift remains for all time (the solid curve is the per-
turbed oscillation and the dashed is the unperturbed—in this case the time for the
next peak is shortened). If the time of the next peak is shortened from the natural
time, we say that the stimulus has “advanced the phase”; if the time of the next peak
is lengthened, that we have “delayed the phase.” Let Ty denote the time of the next
peak. The phase shift is (T — 73)/T, and T, depends on the time ¢ or the phase
6 =t/T at which the stimulus is applied. Thus we can define a phase shift A(8) =
(T —T1(6))/T. The graph of this function is called the “phase response curve”
(PRC} for the oscillator. If A(#) is positive, the perturbation advances the phase and
the peak will occur sooner. On the other hand, if A(6) is negative, the phase is
delayed and the next peak will occur later. We can easily compute this.function
numerically, and the same idea can be used to analyze an experimental system.
Moreover, this curve can be used as a rough approximation of how the oscillator
will be affected by repeated perturbation (periodic forcing) with the same current
pulse. (More complete descriptions and numerous examples of phase models and
PRC:s can be found in Glass and Mackey 1988; Winfree 1980.)

In figure 7.12B, we show a typical PRC for the Morris-Lecar model computed for
both a depolarizing stimulus (solid line) and a hyperpolarizing stimulus (dashed
line). The stimulus consists of a current pulse of magnitude 480 uA /cm? applied for
0.5msec at different times after the voltage peak. The time of the next spike is
determined, which yields the PRC, as above. The figure agrees with our intuition; if
the depolarizing stimulus comes while ¥(7) is increasing (i.e., during the upstroke or
slow depolarization of recovery), the peak will occur earlier and we will see a phase
advance. If the stimulus occurs while v(z) is decreasing (i.e., during the downstroke),
there will be a delay. The opposite occurs for hyperpolarizing stimuli. The curves
show that it is difficult to delay the onset of an action potential with a depolarizing
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stimulus or advance it with a hyperpolarizing one. For different sets of parameters,
these curves may change. As we have seen in the previous section, it is sometimes
possible to completely stop the oscillation if a stimulus is given at the right time. In
this case, the PRC is no longer defined; nearby phases can then have arbitrarily long
latencies before firing.

We now show how this function can be used to analyze a periodically forced os-
cillator. Suppose that every P time units a current pulse is applied to the cell. Let &,
denote the phase right before the time of the nth stimulus, This stimulus will either
advance or delay the onset of the next peak depending on the phase at which the
stimulus occurs. In any case, the new phase after time P and just before the next
stimulus will be 8, + A(fn) + P/T. To understand this, first consider the case where
there is no stimulus: after time P the oscillator will advance P/T in phase, but be-
cause the stimulus advances or delays the phase by an amount A(6,), this amount is
just added to the unperturbed phase, resulting in an equation for the new phase just
before the next stimujus:

Bps1 = On + A} + P/T. (7.24)

This difference equation cah be solved numerically. Here we consider the natural
question of whether the periodic stimulus can entrain the voltage oscillation. That is,
we ask whether there is a periodic solution to this forced neural oscillation. In gen-
eral, a periodic solution is one for which there are M voltage spikes for N stimuli,
where M and N are positive integers. When such a solution exists, we have what is
known as “M : N phase-locking.”

Finding M : 1 phase-locked solutions is quite easy. We require the oscillator to
undergo M oscillations per stimulus period. In terms of eq. 7.24, this means we scek
a solution that satisfies

0+ M=0+A0)+P/T (7.25)

for some value of §. If such a solution exists and is stable (to be defined below), then,
starting near 6, we can iterate eq. 7.24 and end up back at 6. This § is the locking
phase just before the next stimulus and because it does not change from stimulus to
stimulus, the resulting solution must be periodic. Obviously, a necessary condition
for a solution to eq. 7.25 is that M — P/T lie between the. maximum and minimum
of A(f), that is, we must soive

M — P/T = A6. , (7.26)

Having solved eq. 7.26, we need 1o determine the stability of the solution. For equa-
tions of the form of eq. 7.24, a necessary and sufficient condition for 8 to be a stable
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solution is that -2 < A'(8) < 0. Because A(#) is periodic and continuous, there will
in general be two solutions to eq. 7.26 (see figure 7.12B). But because only one of
them will occur where A(6) has a negative slope, there will be a unique stable solu-
tion. We must also worry about whether the negative slope is too steep (i.e., more
negative than —2); for small stimuli, this will never be the case—stability is assured.
When A'(8) < —2 (instability), very complex behavior can occur such as chaos
{see, for example, Glass and Mackey 1988). The case of M : N phase-locking where
N > 1 is more difficult to explain and will not be considered here. It is clear that if
the stimulus is weak, the magnitude of A(#) will also be small so that A — P/T must
be small in order to achieve M : 1 locking. On the other hand, if the stimulus is too
strong, then we must be concerned with the stability of the Jocked solution. We note
that, in a sense, eq. 7.24 is only valid for stimuli that are weak compared to the
strength of attraction of the limit cycle; for stronger stimuli, it will take the solution
more than a single oscillation to return to points close to the original cycle. The PRC
in figure 7.12B shows that, when the stimulus is depolarizing, it is easier to advance
the Morris-Lecar oscillator and thus force it at a higher frequency (0 < P/T < 1)
than it is to force the oscillator at a lower frequency (P/T > 1). For hyperpolarizing
stimuli, we can more easily drive the oscillator at frequencies lower than the natural
frequency. (The counterresults are possible, but only for small ranges of parameters;
see also Perkel et al. 1964)

To illustrate these concepts, we have periodically stimulated the Morris-Lecar
model (natural period of 95msec) with the same brief depolarizing current puise
repeated every 76 msec. Figure 7.13 shows that the oscillation is quickly entrained to
the new higher frequency. Equation 7.26 allows us to predict the time after the volt-
age peak that the stimulus will occur for 1:1 phase-locking. From the PRC we can
see that A{f) = 1 — 76/95 = 0.2 corresponds to two values of &, one stable (cross in
- fgure 7.12B} 8 = 0.702 and the other unstable. Thus the locking time after the voli-
age peak, that is, when the stimulus occurs, is predicted from the PRC to be
t = T - # = 67 msec. This is exactly the shift observed in figure 7.13.

The technigue illustrated here is useful for analyzing the behavior of a single
oscillator when forced with a short pulsatile stimulus. For more continuous types of
forcing, such as an applied sinusoidal current, other techniques must be used. One
such technique is the method of averaging, applicable when the forcing is weak. Peri-
odic forcing is a special case of coupling, which we will now describe.

7.5.2 Averaging and Weak Coupling

Although the general behavior of coupled neural oscillators is very difficult to ana-
lyze, limiting cases can be treated (Kopell 1988). We will describe one method, the
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Figure 7.13

Phase-locking {1:1) of the Morris-Lecar model to & series of four current pulses with interpulse period of
76 msec. Intrinsic period of the membrane oscillator is 95 meec. Parameters are as in figure 7.12B. After
phase-locking is achieved, the stimulus is seen to occur about 67 msec after the action potential’s peak, just
as predicted by the PRC.

method of averaging, used successfully to study the dynamics of two or more neural
oscillators that are weakly coupled (e.g., Hansel, Mato, and Meunier 1995; Ermen-
trout and Kopell 1991). In this limit, the coupling is sufficiently weak that each oscil-
lator’s trajectory remains close to its intrinsic limit cycle. The primary effect of the
coupling is to perturb the relative phase between the oscillators, much as we de-
scribed above. Because the perturbation per cycle is small {(with weak coupling),
however, the net effect occurs only over many cycles, and the per cycle effect is seen
as averaged. For illustration, we summarize the use of averaging to describe the
phase-locking properties of two identical Morris-Lecar oscillators when coupled with
identical mutually excitatory synapses. Detailed derivations of the equations can be
found in the above-mentioned papers. _

We assume that motion of each oscillator along its limit cycle can be rewritten in
terms of .a phase variable. Thus. an oscillator’s membrane potential is periodic with
period T" and follows the function V(6;), where §; is the phase of the jth oscillator,
J=1,2, and ¥ is the voitage component of the limit cycle trajectory. In the absence
of coupling, the dynamics are given simply as & = ¢ + Cj, where C; is an arbitrary
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phase shift. Now consider the effect of small coupling. A brief, weak synaptic current
Iy to cell i from activity in cell ; will cause a phase shift in cell /-

Abi =~V (0/0)ym(8:(8), 8(5)), (7.27)

where ¥*(7) is the infinitesimal phase response function, the minus sign converts
excitatory current to positive phase shift. The synaptic current is given by

Ton(60,67) = gea(B1(D)(V (B(8)) ~ Vym), (7.28)

where the postsynaptic gating variable «(¢) is cell { is activated by the presynaptic
voltage ¥ (6;), V., is the reversal potential for the synapse, and gc is the strength of
the synaptic coupling. The gating variable «(¢) could be represented by a so-called
\event-triggered) alpha function introduced by Rall (cf. chapter 2, this volume). Al-
termatively, it could obey a voltage-gated differential equation,

In the method of averaging we simply “add up” all the phase shifts due to the
synaptic perturbations and average them over one cycle of the oscillation. Thus, after
averaging, the coupled system is found to satisfy

Bt g~ 1) + 0D | o
dé, '
5 =1+ 9:H(6: - 6) + 0(g?), (7.30)

where H is a T-periodic “averaged” interaction function, given by
1 T
H) =1 JU P (O)a(t+ $)(Vom — V(1)) dt. (7.31)

The key to these models is the computation of H (see Ermentrout and Kopell 1991;
Kopell 1988).

In figure 7.14A, we show the function V*(t) along with the synaptic gating vari-
able «(r) over one cycle for exactly the same parameters as in figure 7.12B. Here
(7) = 0.04 7¢™"/% is an alpha-function with a Smsec time constant. Note the sim-
ilarity (except for scale) of the excitatory PRC and the infinitesimal PRC, ¥*(z). As
with the PRC, ¥*(¢) is mainly positive, showing that the predominant effect of
depolarizing perturbations is to advance the phase or, equivalently, to speed up the
oscillator. In only a very small interval of time can the phase be delayed, and this is
a general property of membranes that become oscillatory through a saddle node
bifurcation (Ermentrout 1996). .
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Figure 7.14

The method of averaging for two weakly coupled identical Morris-Lecar oscillators. Parameters for the
oscillators are as in figures 7.4-7.6 (and figure 7.12A) and an applied current J = 50 pA /em?, (A) Solid
linc shows the infinitesimal PRC, ¥*(¢) and the dashed line shows the time course of the excitatory syn-
aptic conductance (for plotting convenience, here multiplied by ten), modeled as an alpha function with a
Smsec time constant and peak of about 0.075mS/cm?®. The alpha function “turns on” when V crosses
20mV, {B) Interaction function H(¢} and its odd part G(¢) for the synaptic dynamics shown in panel A
and a synaptic reversal potential of 0 mV. Zeros of the function G(¢) correspond to phase-locked solutions
to the weakly coupled system; stable solutions have positive slopes and unstable have negative slopes.
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Figure 7.14B shows the function H(f) defined in eq. 7.31 for that figure’s alpha
function and for ¥y, = 0mV. We can use this function along with eqs. 7.29-7.30 to
determine the stable phase-locked patterns for this coupled system. Let @ = 6; — 6,
denote the phase difference between the two oscillators. From egs. 7.29-7.30 we see
that © satisfies

";_(;) = g:(H(~8) - H(®)) + 0(g?) = —24.G(®) + O(g?). (7.32)

Here G(@®) is just the odd part of the function H. Because the coupling is weak, the
higher-order terms, O(g?) are ignored. Equation 7.32 is just a first-order equation.
Phase-locked states are those for which @ does not change, that is, they are roots of
the function G(®) and they are stable fixed points if G'(®) > 0. Because any odd
periodic function has at least two zeros, ® =0and @ = T /2, there will always exist
phase-locked states, although, these may not be stable. Synchronous solutions
(© = 0) imply that both membranes fire iogether. Antiphase solutions (€ = T/2)
are exactly one-half cycle apart. Figure 7.14B shows the function G{©), from which
we see there are four distinct fixed points: the synchronous (precisely in-phase) solu-
tion; the antiphase solution; and a pair of phase-shifted solutions at @ ~ + 15 msec.
Both the synchronous and antiphase solutions are unstable but the phase-shifted
solution is stable. Thus, if two of these oscillators are coupled with weak excitatory
coupling and the parameters chosen as above, they will phase-lock with a phase shift
of about 20% of the period. Although the classical view is that mutual excitation
leads to perfect synchrony, computations with a variety of neuronal models suggest
that this is not generally the case.

This type of analysis is easily extended to systems where the oscillators are not
exactly identical, coupling is not symmetric, and there are many more oscillators.
The behavior of such phase models and the forms of the interaction functions, H,
are the topics of current research.

7.6 Summary

We have introduced and used some of the basic concepts of the qualititative theory
of differential equations to describe the dynamic repertoire of a representative model
of excitability. We believe that a geometrical treatment, as in the phase plane, gives
one an opportunity to see more clearly and to appreciate the underlying qualitative
structure of models. One can see which initial conditions, for example, those resulting
from a brief perturbing stimulus, will lie in the domain of attraction of any particular
stable steady state or limit cycle. This is especially helpful for the design of experi-
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ments to switch a multistable system from one mode to another. Analytic methods
are also important—for determining and interpreting the stability of solutions {e.g.,
eq. 7.19 for the Hopf bifurcation) and for approximating aspects of the solution
behavior {e.g., eq. 7.25 for phase-locking). Another useful conceptual device is the
bifurcation diagram by which we have provided compact descriptions of the system
attractors. Although in several of our illustrations, the bifurcation parameter was /,
and the steady-state I-¥ relation appeared explicitly in the diagram, channel density,
synaptic weight (as in the Wilson-Cowan network model), or any other parameter
can be used. ' ' '

We have shown how a minimal but biophsically reasonable membrane model can
be massaged to exhibit robustly a variety of physiologically identifiable firing behav-
jors. For the simplest two-variable Morris-Lecar model, we illustrated some qual-
itative differences in threshold behavior. When the steady-state current-voltage
relation is monotonic, action potential size may be graded, although generally quite
steeply with stimulus strength, and latency for firing is finite; when it is N-shaped,
there is a true (saddle point) threshold for action potentials, latency may be arbitra-
rily long, and intermediate-sized responses are not possible. Correspondingly, for a
steady stimulus, the monotonic case leads to onset of oscillations with a well-defined,
nonzero frequency (Hopf bifurcation), and with possibly small amplitude (super-
critical). In contrast, in the N-shaped case repetitive firing first appears with zero
frequency (homoclinic bifurcation). These features are consistent with some of those
used by Hodgkin (1948) to distinguish axons with different repetitive firing proper-
ties, class IT and class I, respectively. Additionally, we have provided a geometric
interpretation of some common forms of bursting neurons. Many bursters can be
dissected into fast dynamics coupled to one or more slow processes that move the
fast dynamics between resting and oscillatory states. Coupled and forced oscillators
can often be reduced to maps or to continuous low-dimensional systems of phase
equations, especially when the interactions are weak.

With regard to implementation of models, there are sophisticated software pack-
ages and subroutines available nowadays to help make theoretical experimentation
and analysis a real-time endeavor; the “tooling-up” time is greatly reduced. Pro-
grams like XPP incorporate a mix of numerical integration and analytic formulation
(linear stability analysis, bifurcation analysis, averaging—carried out numerically}
with graphical representation all in an interactive framework. (The numerical
methods employed by XPP are described in chapter appendix B.) To set up and get the
Morris-Lecar model running should take less than fifteen minutes. Although we have
used XPP here for the two-variable model, it can also deal with higher-order systems

(like the bursting models of section 7.4). Stability of steady states can be computed,
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and time courses plotted interactively. The generalization of nullclines to surfaces is
not available computationally, but two-variable projections of trajectories from the
higher-order phase space can be insightful (e.g., figure 7.9). A widely distributed
subroutine we have also found valuable for dissecting nonlinear systems in AUTO
{Doedel 1981), which automatically generates bifurcation diagrams (as in figures 7.2,
7.6, 7.7; see chapter appendix B). The main components of AUTO are included in
the package XPP, thus making AUTO an interactive program. We used XPP-
AUTO for the fast/slow analysis of the bursting models in section 7.4. For the
evaluation and algebraic manipulation of analytic prescriptions (e.g., lengthy pertur-
bation and bifurcation formulas), many modelers have used symbol manipulation
programs like Mathematica and MAPLE with success (see Rand and Armbruster
1987). As regards numerical packages, we advise that one be generally familiar with
the methods being employed, and with their limitations. It is not so uncommon to
pose a problem that seems to just miss the criteria for suitablity of a given tech-
nique—and one should be careful to recognize the symptoms of breakdown of the
particular method being used.

Finally, we emphasize the value of using idealized, but biophysically reasonable,
models in order to capture the essence of system behavior. If models are more de-
tailed than necessary, identification of critical elements is often obscured by too
many possibilities. On the other hand, if justified by adequate biophysical data, more
detailed models are valuable for quantitative comparison with experiments. The
modeler should be mindful and appreciative of these two different approaches: which
one is chosen depends on the types of questions being asked and how much is known
about the underlying physiology.
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Appendix A: Morris-Lecar Equations
The diffsrential equations and V-dependent fomctions are
C 2 = —gema( VYV = Ver) =GV = Vi) = BulV — Vi) +1 .33

[Ww(y) =W
—-¢ 2 (7.34)
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where

me{¥) =05l + tanh{{V - ¥}/ V2}, (7.35)
W (V) = 0.5 %[1 + tank{(¥ — V3)/V4}], (7.36)
and

(V) = Lfcosh{{¥ — V3)/ (2% Vi)}. {7.37}

For Figures 7.1-7.3, we use the parameters V; = —1.2, V5 = 18, V3 =2, ¥y = 30,7, = 4.4, fg = 8.0,
gL =2,Vk = —84, ¥y = —60, Vg = 120, C = 20uF fem’, and ¢ = 0.04. {All conductances are in mS/cm’
and voltages in mV.) These same parameters are used for figures 7.4-7.6, with the following exceptions:
V3 =12, V4 =174, 53¢, = 4.0, and ¢ =1/15, In figures 7.7-7.8, the parameters are a$ in figures 7.4-7.6
but ¢ = 0.23. The current, 7 (in pA/cm?), is generally the only free parameter.

Appendix B: Numerical Methods

' Most of the figures shown in this chapter were produced by pumerically solving the Morris-Lecar equa-

tions. We have used a program XPP, written by Bard Ermentrout, which uses a variety of aumerical
integration methods to solve the equations on any computer that runs X-windows. It is available via
anonymous ftp from fip.math.pitt.edu/pub/bardware, and there is an extensive tutorial geared toward
neurobiology available on the World Wide Web at http:/fwww.pitt.eduf ~ phase, For the all but the
bursting simulations, we have used a fourth-order Runge-Kutta algorithm. The bursting simulations
employed a variable-time-step Gear algorithm {Press et al. 1986).

For the Morris-Lecar model, the nullclines can be found explicitly by solving each of the equations for
w as a function of v, although this is generally not easy and thus calls for numericat techniques. All of the
phase plane pictures were found by numerically computing the nuilclines. This is done by breaking the
phase plane into many small boxes, evaluating the functions on each point, and then using a linear inter-
polation to find the zero contours.

Singular points are found using Newton’s method with a numerically computed Jacobian. Once a steady
state is found, the Jacobian is computed and the QR algorithm is used to find the eigenvalues. These
determine the stability of the singular point.

For certain steady states in the Morris-Lecar model, we want to find special trajectories called the
“unstable” and “stable manifolds.” This is done by computing an eigenvector for a particular eigenvalue
(the eigenvectors are tangent to these manifolds) by inverse iteration. Once the eigenvector is known, the
equations are integrated cither forward-or backward in time with initial conditions that are on the
cigenvector and slightly off of the singular point,

The qualitative behavior of higher-dimensional systems as a parameter is varied can be understood and
described compactly by determining the bifurcation diagrams. AUTO {Doedel 1981) was used in this
chapter (through its intérface with XPP) to trace, essentially antomaticatly, the bifurcation curves as any
parameter is varied. This prograrn is able to find all steady states and periodic solutions regardless of their
stability. The characteristics of stability, eigenvalues for stcady states and Floguet exponents for periodic
solutions, are computed along with the frequencies of periodic solutions. Two-parameter bifurcation dia-
grams (similar to figure 7.11C) indicating where steady states and periodic solutions exist and where they
gain or lose stability can also be computed by AUTO.

The computation of the “infinitesimal PRC” is done automatically as part of the XPP package. Essen-
tiatly, it solves an allied linear equation until a particular periodic orbit is found. The integral required for
averaging is antomatically computed.

A general and practical reference to many of the above numerica! methods, which also leads to more
literature, is Press et al. 1986,




