
Computational Neuroscience (EC60007) 
PROJECT II (2nd September) 

Autumn 2023 
 

Due: 29th September (Submit in my ECE Locker–R206, before 5:00 pm  
& email me the m-file) 

 
The second project has 2 parts. The first part was designed to numerically simulate the 
Moris Lecar Equations (MLE) and perform phase plane analysis and understand the 
topics being discussed in class. In the second part the project builds on the MLE to 
simulate Hodgkin Huxley (HH) equations and then simulations of other HH type models 
of neurons. All parts are to be answered by each of you. Do not worry about grades – 
enjoy doing the projects. 
 
You are required to submit a precise and cogent write up with figures answering all 
questions (please make it short and to the point – no need for a lengthy write up);  
i) Please submit the printed/handwritten write up in my locker 
and also 
ii) Please email only one (1) m-file so that running it produces all the figures that 
are there in your write up 
 
Project: 
 
1. First we will go over the essential step of developing neural models – it is working out 
a consistent set of units for the variables. Generally, that means making the numerical 
values of variables of the order 1; that is, it is possible to specify currents in amps, but 
then the numbers will be very small, which can cause problems with the numerical 
algorithms (see question 4 below). In neuron models, it is usually better to specify 
currents in microAmps or nanoAmps. The same thing goes for potentials (mV), time 
(ms), and impedances. You are not free to choose any set of units, however, in that the 
units must be consistent. Thus volts, amps, siemens (1/ohms), farads, and seconds are a 
consistent set of units. For example, Ohms law requires that current=conductance x 
voltage, or amps=siemens x volts. If you change volts to mV, you must make 
corresponding changes in the other units so that Ohm’s law is still numerically true. 
Choose the following units: milliseconds, microamps/cm2, millivolts, microfarads/cm2 
and millisiemens/cm2. Show that this is a consistent set of units. 
Suppose that it had been desirable to specify conductance as microsiemens/cm2. Give a 
set of units consistent with μS/cm2 for current. Is your solution unique? 
 
2. Set the parameters for MLE as follows as in Rinzel and Ermentrout Chapter 7 (R&E) 
also available on the website: 
http://www.math.drexel.edu/~medvedev/classes/2008/math723/papers/Chapter_on
_Neural_Excitability.pdf 
[ gca,   gk,  gl,  vca,   vk,     vl,    phi,   V1,   V2,  V3,  V4, V5, V6,  C] =  
[4.4, 8.0, 2, 120, -84, -60, 0.02, -1.2, 18,  2,  30,  2,  30, 20]; 
Find the equilibrium point for the system with this set of parameters (and with Iext=0). 
You should come up with two different ways of doing this calculation. Explain your 
methods. It may be helpful to plot the nullclines. In fact, writing a small program to plot 
the nullclines, find the equilibrium points, and compute the eigenvalues at the 
equilibrium points would be useful at this point. In the following, always run the model 
from its equilibrium point (i.e. set the initial values of V and w to their values at the 
equilibrium point) unless instructed to do otherwise. 
Remember that as you apply a steady-state (D.C.) current Iext, the equilibrium point 



changes. A useful Matlab plotting subroutine for phase plane analysis is quiver() which 
can be used to make an arrow plot of the local directions of flow in the phase plane. Be 
warned, however that Matlab requires that the X and Y values given to this function 
must have similar magnitudes. If you place V (max value about 100) on one axis and w 
(max value about 1) on the other axis, it is necessary to multiply W by 100 to get a “good 
looking” plot (i.e. plot V versus 100*w). 
In the following, when you make phase plane plots, it will usually be very helpful to your 
understanding to plot both trajectories and nullclines on the same plot. The result of this 
part should be a phase-plane plot with nullclines, equilibrium points, and arrows. The 
numerical values of V and w at the equilibrium point should be given. 
 
3. Is the equilibrium point found in Q2 stable (with Iext = 0)? Check this by computing the 
eigenvalues of the Jacobian of the system at the equilibrium point. Obtain the Jacobian 
using Matlab. Once you have the Jacobian, evaluate its eigenvalues. 
 
4. Explain why the default numerical tolerance values built into matlab (AbsTol=10-6 and 
RelTol=10-3) are reasonable for the MLE. Suppose you set the units for the voltage 
variable in the MLE to kV (kilovolts). This would be a stupid thing to do, but if you did it, 
how would you have to change the values of AbsTol and RelTol? Understanding this 
issue is essential for accurate use of the ODE solvers. 
 
5. Generate an action potential using MLE and make a phase plane plot of your action 
potential with  =0.02 and ϕ=0.04 and explain the difference in the shapes of the two 
plots, in terms of the effects of the parameter ϕ. You may check your answer by making 
  even smaller, say 0.01. 
 
6. Simulate depolarizing current pulses of various amplitudes by setting the voltage 
initial condition to a succession of values positive to the resting potential while starting 
w at the equilibrium point. Find depolarizations that are sufficient to produce action 
potentials. Plot phase-plane trajectories for values of initial depolarization that do and 
do not produce action potentials. Make sure Iext=0 for this part and make sure that the 
duration of the simulation is large enough to see the whole action potential (300 ms or 
so). Action potentials are usually thought to have thresholds. Does the MLE with the 
given set of parameters have a threshold depolarization? If your answer is yes, define 
what you mean by threshold. Be careful here, you should investigate initial values of V 
(in a specific interval) very carefully, i.e. to several decimal places; it will be useful to 
make a plot of the maximum amplitude of the action potential versus initial value of V. 
 
7. Run the model with Iext=86 μA/cm2 with three sets of initial conditions: 1) Set the 
initial conditions to the equilibrium point used above, appropriate for Iext=0; 2) Set the 
initial conditions to the equilibrium point when Iext=86 μA/cm2; and 3) Set the initial 
conditions off the equilibrium point for Iext=86 μA/cm2, say at (-27.9, 0.17). Make sure 
you set the time span for the simulation to be long enough to see the full response. Plot 
the three trajectories on a phase plane. Describe the stable states of this system (make 
sure to characterize the equilibrium point for Iext=86 μA/cm2). 
Explain the difference between trials 1) and 2) above. That is, describe two experiments 
in which current is applied to a cell to produce the responses you observed.  
 
8. (Optional – Extra Credits) The system with Iext=86 μA/cm2 apparently has two stable 
states. Find the contour that divides the phase plane into those initial conditions that 
converge to the equilibrium point and those that converge to the limit cycle. Do this by 
running the model backwards in time to find an unstable periodic orbit like the UPO in 
R&E. Make sure you understand what happens to 1) null-clines 2) equilibrium points 
and 3) stable and unstable solutions when the model is run backwards in time. 



Show that the UPO is a true threshold in the sense that an infinitesimal change in V leads 
from a subthreshold waveform to an action potential. 
 
9. Analyze the equilibrium points for Iext= 80, 86, and 90 μA/cm2 and explain the 
observations. Do the results correspond to that predicted by the eigenvalues of the 
system linearized around the equilibrium point for Iext=86 (do this quantitatively, don’t 
just answer “yes” or “no”.)? Make a plot of the rate of firing action potentials versus the 
applied current over the range 80-100 μA/cm2. In each case, start the system at its 
equilibrium point for the applied current. 
 
10. Set your MLE program to the following parameters: 
[gca, gk, gl, vca, vk, vl, phi, V1, V2,V3, V4,V5, V6, C]=[4, 8.0, 2, 120, -84, -60, 0.0667, -1.2, 18, 12, 
17.4, 12, 17.4, 20] 
Iext = 30 starting from time 0 to 2000 ms. Note that the current should be set to a non-
zero value throughout your simulation. Determine the equilbrium point(s) of this 
system (there should be 3) and characterize them as to stability. Show in a phase plane 
plot, the nullclines, equilibrium points, and manifolds (if there are any). 
 
11. For the system in Q10 show how the equilibrium points and their character change 
for current range between 30 and 50 μA/cm2. Pay special attention to the range 
between 39 and 40. It will be necessary to show what happens to the equilibrium points 
as the current increases. Make a plot of the rate of firing action potentials versus the 
applied current over the range 30-45 μA/cm2. What do you learn?  
 
Hodgkin Huxley Equations 
 
12. Given below are equations for the classical HH model of the squid giant axon from 
their original paper. The model consists of a membrane capacitance C, a sodium channel 
GNa, a delayed-rectifier potassium channel GK, and a leak channel GL. The equation for 
membrane potential can be written as given where Iext is externally applied current. The 
conductances are represented in terms of the HH parameters as provided below and 
each of the three conductance parameters is governed by a differential equation of the 
form given (with x, where x = n, m, or h). The functions αx and βx have been provided 
along with the parameters of the model. The rate constants are multiplied by a 
parameter ϕ, which is an adjustment for the effect of temperature on the rate constants 
of the model. We assume that ϕ increases with temperature according to the 
relationship provided. (T is the temperature of the simulation. For the purposes of this 
project, use T=6.3° so that ϕ=1 (i.e. ignore ϕ). 
Write a program to simulate this system of equations. In doing so, take care with the 
equations for αn and αm whose denominator and numerator are both 0 for certain values 
of V, giving a 0/0 situation which should be handled by you, using a little bit of your 
neurons.  
 



 
 
Please consider the units for consistency as you did for the MLE. Make appropriate 
changes as and if needed. 
 
13. Once you have the model running, determine the value of EL necessary to make the 
resting potential of the model -60 mV. Fix EL at this value for the rest of the project. 
Please use a stiff integration algorithm such as ode15s to avoid instabilities with this 
model. Make sure you have the numerical error tolerances set properly. 
You should be able to produce action potentials with Iext=10 μA/cm2.  
 
14. Check the stability of the model at rest with Iext=0. Determine the threshold of the 
model for brief current pulses, approximating them with depolarizations, as discussed 
in class. 
 
15. Add a steady applied current (like Iext in the MLE model) to your model. Show the 
behavior of the equilibrium points for steady current injections from 8 μA/cm2 to 12 
μA/cm2. (Refer to Fig. 7.3 of R&E). When testing for stability, it is not sufficient to simply 
start the model at some initial condition and then look for a decay into a stable 
equilibrium point (as a hint, the equilibrium point is stable at 9 μA/cm2, but the model 
goes into a limit cycle when started at an initial condition equal to the equilibrium point 
for zero current, determined above). Thus the equilibrium point will have to be 
determined at each current by explicitly finding it. 
 
16. It is helpful to use a reduced model with only two state variables to study the effects 
of noninactivation. As discussed in class, reduce the system to a system with n and V as 
the only state variables by appropriately setting m and h. Modify your HH model to have 



this reduced form and generate action potentials with current injections or 
depolarizations. You should see that the reduced model has the same general behavior 
as the full model. Note and explain the differences. 
 
17. A contribution of the HH model was to explain the phenomenon of anode break 
excitation, wherein the membrane produces an action potential at the end of a 
hyperpolarizing stimulus pulse (see HH’s paper Fig. 22). Show that your model 
demonstrates anode break excitation (a hyperpolarizing current of -3 μA/cm2 for 20 ms 
should suffice). With the HH model parameters and explain why anode break excitation 
occurs. 
 
18. Anode-break can be studied by considering a reduced HH model system with only 
the V and m state variables as discussed in class. The n and h variables are fixed at some 
appropriate value, under the assumption that the time constants of m and V are very fast 
compared to those of n and h, so with m as one state variable, threshold can be studied. 
Plot phase plane for m and V defined by the usual equations except that n and h are fixed 
at two values: 1) the values for membrane potential at rest, -60 mV and 2) at the values 
at the end of the anodal stimulus used to produce the anode break excitation above. 
Characterize the equilibrium points in the two cases. The phase plane should contain an 
equilibrium point near the resting potential in one case but not in the other. What 
happens to the resting equilibrium point in case 2) and what does this have to do with 
the anode-break action potential?  
 
This project is entirely based on the project I did as a student of a similar course. 


