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Triggered Correlation

EGBERT DE BOER, Sc.M., Ph.D., AND PAUL KUYPER, Sc.M.

Abstract-This paper shows to what extent an average-response
computer can be utilized for computing a cross-correlation function.
This type of computer needs synchronization pulses, and the sim-
plest methods of computation are those in which these pulses are
directly derived from one of the signals (triggered correlation). The
first method is to generate a synchronization pulse whenever the
signal crosses a pre-set threshold in any direction. In this case, the
computer output function is shown to be proportional to the true cor-
relation function, for Gaussian signals. In a second method, syn-
chronization pulses are produced when the signal crosses the thresh-
old in a specified (e.g., positive) direction. Then the computer output
is found to be contaminated by a systematic error, which, in turn,
depends on the derivative of the correlation function. These two
methods are described in detail, both with respect to the results and
to the accuracy obtainable. Several other, less important, methods
are only briefly described.

The second method (single-direction triggered correlation) is the
simplest and most attractive one. Its feasibility is shown by means of
a practical example. It is also useful in the analysis of compound sys-
tems, namely, systems that consist of a linear circuit followed by a
triggering and pulse-forming circuit. In this respect, the method can
be, and, as a matter of fact, has been applied to problems like the
excitation of nerve impulses in sensory organs. Such an application is
briefly described.

INTRODUCTION
A UTO-CORRELATION and cross-correlation func-

tions are often used to determine the parameters
of linear circuits under random excitation [1].

The computation of these functions generally requires
a good deal of instrumentation. It is then logical that
simplifications of the procedure have been sought. These
met with considerable success: in many cases signals
can be distorted quite heavily before their correlation is
irretrievably lost [2]. Either one or both of the two in-
put signals can be infinitely clipped, for instance: the
resulting correlation function retains its general shape.

For the solution of other problems, special-purpose
computers (average-response computers) have been
made available that perform a specialized type of corre-
lation computation [3], [4]. These instruments operate,
in fact, on one signal, but they need to be triggered by
a series of synchronization pulses. They determine the
average waveform during a specified period after the
synchronization pulses. They have become quite popu-
lar, especially in certain fields of physiology.
The purpose of this paper is twofold. First, it will be

shown that an average-response computer can be uti-
lized to obtain a cross-correlation function in the general
case. The success of the method depends, of course, on
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the method used for providing the proper triggering
pulses; quite simple schlemes of triggering will prove
fruitful. The second aspect of "triggered correlation"
lies in its use in the analysis of compound nonlinear
systems. A system consisting of a linear filter followed
by a triggering circuit and a pulse generator can be
analyzed by application of one of the triggering schemes
described.

Practical application of the method is illustrated by
typical experimental results. These cover two aspects:
general cross-correlation computation and analysis of
nonlinear systems (in this case, the excitation of nerve
impulses in the inner ear).

SIMPLIFIED CORRELATION PROCEDURES
According to the expression (1) for the finite-time

estimate 4:5*(r) of the cross-correlation function '0,,(T):

+x*(r) = -Jf x(t + T)y(t)dt, (1)

the following operations must be executed:

1) delay of one signal withI respect to the other
2) multiplication of two signal values
3) integration or averaging.

The procedure is eminently suited to a general-purpose
computer, although special measures must often be
taken to handle a large amount of input data.

Several methods have been advocated to reduce
demands on processing. In relay correlation [5], one of
the signals is infinitely clipped; i.e., it is replaced by
+ 1 when it is positive and by -1 when it is negative.
Either of the two signals x(t) or y(t) can be treated in
this manner:

cxyr*(T) = fT x(t + r) sgn {y(t)}dt

1 T

Orxv*(r)-= sgn I{x(! + r) Iy(t)dt.
(2)

In general, the relay correlation function (RCF) reo
sembles the true correlation function surprisingly well.
For Gaussian signals with zero means, it is even propor-
tional to the true correlation function. Appendix I
gives a condensed derivation of this property, and, in
addition, gives the results of the general not-centered
case. We will need these results later.
The second method used to reduce the amount of

information processing is a more drastic one. Both the
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signals x(t) and y(t) are infinitely clipped. The resulting
polarity correlation function (PCF):

OX P*(T= 1fITsgn {x(t + r)sgsgn{y(t)}dt, (3)

again is a good substitute for the true correlation func-
tion [2], [5], [6]. (See (15) of Appendix I.) Despite the
extremely crude signal representation the properties of
the original correlation function are well retained. One
can conclude that a pair of random signals really can
incur a great deal of distortion before their mutual cor-
relation is lost. Otlher schemes of nonlinear signal pro-
cessing might turn out to be successful as well.

Average-response computer is the common name
for special-purpose computers designed for retrieving
hidden signals from superimposed noise. These also
carry out a kind of simplified correlation [3], [4], [7]:
they compute the average value of the input signal
x(t+r) taken over a large number of instants t =t
(i=O,= , . . * N) at wlhich a synchronization impulse is
given. The output is computed for a large number (400
to 1000) of values of r; the results are usually presented
on an oscillograph as a function 4(-) of r. As a matter
of fact, an average-response computer adds up all the
signal fragments x(ti+T); the division by N is tacitly
assumed to be taken care of by the interpretation of the
result.
An average-response computer can be used to re-

trieve a hidden periodic signal from noise, and also to
detect responses time-locked to stimuli given at random
instances. In both modes, the average-response corn-
puter has been extremely useful in fields like general
physiology, neurophysiology, biophysics, EEG-analysis,
etc. [3], [4].
One may ask whether such an instrument as the

average-response computer may be utilized to carry out
a general correlation computation. Then we start with
two functions, the x- and the y-signal. One of these, e.g.,
x(t), can be handled in the normal way; the other one
has to be converted into a series of sync pulses. The
simplest way to do this is to let the sync pulse be trig-
gered whenever the signal y(t) satisfies a certain con-
dition. We may name such a method triggered correla-
tion, since the correlation procedure is triggered directly
by one of the signals. Several cases of interest can be
distinguished.

1) Dual-polarity triggered correlation. Here the sync
pulse is generated xvhen y(t) crosses a pre-set
threshold b, irrespective of the direction of crossing
(see Fig. 1).

2) Single-polarity triggered correlation. The sync
pulse is generated wh-en y(t) crosses the threshold
b in a specified, e.g., tlhe positive, direction (see
Fig. 2).

3) Extreme-value triggered correlation. The sync
pulse is generated when y(t) passes througlh a
maximum (see Fig. 3).
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Fig. 1. Dual-polarity triggering. (a) x-signal, to be processed.
(b) y-signal and threshold level b. (c) Series of sync pulses.
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Fig. 2. Single-polarity triggering. (a) x-signal, to be processed.
(b) y-signal and threshold level b. (c) Series of sync pulses.

A n AA(a)

(b)

(c)

isrVV'Vv

t

7(1)
I

I I II

II .
gI I .
II

* *

. ,

::.;. iji !.
IS I I I.'
I. . I .11

I I I
III

. j; ! : :ALLLLLLLLLIII I___
sync
pulses t

Fig. 3. Maximal-value triggering. (a) x-signal, to be processed.
(b) y-signal. (c) Series of sync pulses.
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4) Quasi-relay triggering. In this method, triggering
impulses are synchronous with a clock and occur
whenever y(t) is positive.

We will discuss the character and the accuracy of these
methods in some detail. We may predict that method
2), being the simplest one, xvill be the most important
one in practice. That is one reason why this method is
elaborated upon somewhat more than the others.
The list of possibilities given above is by no means

exhaustive. There are many other ways to incorporate
an average-response computer in a correlator. Those
methods may utilize, for instance, a separate electronic
signal multiplier. In that case, the computer is conve-
niently employed as a multiaddress storage and integra-
tion device. Or else, in method 2) an auxiliary signal
may be added to one of the signals under study in order
to distribute the triggering moment uniformly over the
range of signal values [6]. Such methods will give results
that are directly comparable to those from true correla-
tion computation since they tend to simulate relation
(1) or its ensemble-average counterpart directly. For
the purpose of this paper, however, such highly per-
fected procedures as these are not interesting. We will
treat here only the simplest procedures like the ones
tabulated above. We will find that these give, in general,
a very useful approximate evaluation of the correlation,
at least for Gaussian signals. The closeness of the ob-
tained result to the exact function may be surprising at
first sight. On closer inspection it appears as a logical
consequence of the fact that correlation functions are
highly resistant to nonlinear processing of the signals
[2]. The triggering procedure employed is then just one
specific kind of nonlinear no-memory processing.

GENERAL THEORY

Case 1. Dual-Polarity Triggered Correlation
In this case, the computer is triggered when one of

the signals, e.g. the y-signal, crosses a threshold b, irre-
spective of the direction of crossing. Consider two sig-
nals x(t) and y(t), of which the cross-correlation function
Oxy(T) is to be determined. For a given, fixed value of r,
the signal values can be regarded as two random vari-
ables. Let us assume that these variables, for conve-
nience called x and y instead of x(t) and y(t+T), have a
joint Gaussian probability density

p(x, y) =exp X(2-2pxy +y24)
with ^, y)-cexp X- 2(1_ p2)

witlli

c =
2X(l p2)i

The variances of x and y are both unity, and the correla-

tion coefficient is p. We use p for reasons of simplicity
instead of the value of the correlation function fry(r)
for the pertinent value of r.

We desire to compute the average value Xb of x under
the condition that y equals b, irrespective of the direc-
tion in which this threshold is crossed. The conditional
probability q(xl y =b) is simply obtained by putting
y=b into (4)

2-2pbx + b2
q(xI y = b) = kcexp {- p+

The constant k is included to ensure that the total prob-
ability, integrated over all x-values, becomes unity.
Then

k = V/2r exp (b2/2).

The average value Xb of x under the probability density
function q(x y = b) becomes

X +00

XCb=
-0

xq(x|Iy =b)dx =pb. (5)

Furthermore, the variance o-2 of each sample of x under
this condition is (1-p2). It is this value Xb that the aver-
age response computer ultimately produces at each of
its addresses when it is triggered at all the instants ti
that y(ti) = b and averages the signal x(ti+r). If we
visualize Xb next as a function Xb(r) of T, we proved that
the computed function xb(T) is proportional to the true
correlation function O/,,(T). The constant of propor-
tionality is b.

Case 2. Single-Polarity Triggered Correlation

Assume now that the average-response computer is
triggered when y(t) crosses the pre-set threshold level b
only in the positive direction, as in Fig. 2. The statistical
properties of x(ti+r) at those instants ti cannot be ob-
tained any more from the two-dimensional probability
density function (4). We must take a third variable
into account, the time derivative of y(t)

d
z(t) = a- y(t).

dt

Here a is a positive constant introduced for the purpose
of normalization. The average-response computer now
produces the average value of x(ti+T), averaged over
those instants ti that y(ti) =b and z(ti) is positive. We
thus have to consider three signals x(t), y(t), and z(t) all
normalized to have unity variance with three cross-
correlation fuLnctions (T), O.z(T), and oyz(T). The cor-
relation function qb,0(T) is proportional to the derivative
of 5,,()Tvith respect to r

d d {dxt
Oxy(-) - Ef{x(t)y(t- T)}= E xx(t) y(t-r

- -E x(t)-y(t-)}- r)}a.
dt
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Similarly,

d
4yz(r) = -a-4O,(r).dr

For a certain value of r, the signal values x(t+'r), y(t),
and z(t) can be taken as random variables. Let us call
these x, y, and z. They have a joint Gaussian probability
distribution and their correlation coefficients p., p.2,
and p, are

Pxy = 4lxV (T)
d

Pxz = O.,.(T) = - dr

d
Pyz = cyz(O) = --a-4 Y(0).

d-r

The method of auto- and cross-relation, described by
Kamp et al. [8] is very similar to this case. In their
method, an average-response computer is triggered at
moments that are slightly differently defined. The
y-signal can be written as a sum of (random) Fourier
components [9]

N

y(t) = a. cos (wnt + fin)
n-1

where an and /n are random variables, an with a Gaus-
sian distribution, 1'n with a uniform distribution (be-
tween 0 and 2ir), and co = n27rfo. This signal is supposed
to be band-limited, hence N is finite. Define the Hilbert
transform 9(t) of y(t) as the signal with all components
shifted 900 in phase

The last relation is due to the fact that y and z are to be
taken at the same value of t. For an auto-correlation
function like 0,,(r), the derivative at T=0 is zero, pro-
vided the associated spectral density function 4,(w)
decreases fast enough toward zero for co- oo. We as-
sume that the latter condition is fulfilled; the correlation
pyz to be used in the calculations is then zero.
The desired average value *+ of x, subject to the con-

ditions y = b and z> 0, can be computed in several ways.
One is the method discussed in the preceding section.
This method, based on the probability density function,
will yield unwieldy intermediate results, despite the fact
that one correlation coefficient is zero. We used another
method based on the characteristic function. The der-
ivation is given in Appendix II. The result is again
valid for Gaussian signals

x+ = bpry + -p±Z- (6)

The first term is the same as the one obtained in case 1.
It indicates an average that is proportional to the de-
sired correlation value. The second term is to be re-
garded as a correction; it represents the systematic error
made by considering only one-way threshold crossings.

Case 3. Maximal- Value Triggered Correlation

The properties of this method are easily derived from
those of the second method. If one chooses the triggering
instants at the extrema of y(t), one effectively triggers
at the zeros of j(t) the time derivative of y(t). If only
maxima are counted, the value of y(t), the second de-
rivative, is always negative. We thus have to replace
y(t) by a9(t) and z(t) by -a2y(t) in the above derivation.
The result reads (since the equivalent threshold level b
is zero)

2 \ i d2
x+(T)= -t- a2-q v)* (7)

N

9(t) = an sin (cwnt + An)-
n=1

Now the combination q(t) =y(t) +i.9(t) is the so-called
"analytic signal" or pre-envelope signal [10] which can
be characterized by an amplitude j77(t) and a phase
function arc tan { 9(t)/y(t) }. In the relation procedure,
triggering occurs when 7(t) passes a pre-set phase. If we
choose this phase zero, triggering will occur at the
moments ti where

N

9(ti) = an sin ((nti + VIn) = 0
n-I

and

d-9(t1) <0.
dt

The moments t, of maximum y(t), on the other hand, are
given by

N

yt;) = - aan,n sin (Wnt, + A,n) = 0
n-I

and

yXt) < 0.

If the y-signal is a narrow-band signal, one may replace
the coefficient wCn in the latter expression by the average
frequency co and these two equations then become
identical. Hence, when this provision is met, triggering
occurs approximately at the maxima of y(t). Then the
method produces the second derivative of the true cor-
relation function Ok.,(r). For narrow-band signals, this
result resembles the correlation function very much.

In the most general case the relation method yields a
result that is proportional to the derivative of -k,(r)
(the latter function being the Hilbert transform of the
original correlation function) with respect to r. In any
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event, the relation method of Kamp et al. is an example
of a triggered correlation procedure, and as such, it is
one of the many possible correlation methods.

Case 4. Quasi-Relay Triggered Correlation
In this case, trigger pulses are generated synchronous

to a clock whenever y(t) °0. During the time y(t) stays
positive several trigger pulses can be present, and each
must start a computer run. This is difficult to realize.
The theory of this method, when the clock frequency is
high enough, is equivalent to that of relay correlation.
We refer to Appendix I. For low clock rates, one incurs
the same problems as in any sampled-data system with
too low a clock rate. A discussion of this point would be
far outside the scope of this paper.

DISCUSSION, TECHNICAL ASPECTS, ACCURACY
The point, briefly mentioned in Case 4, is of interest

in all cases. The action of an average-response computer
is such that on each received sync pulse the whole range
of r-values is processed. Many sync pulses, therefore,
tend to be lost. When enough data are available, this
does not matter. In the other case we can solve the
problem, in principle, by repeating the signals again and
again, taking care that each time new waveform frag-
ments are processed. We will tacitly assume that this
problem is solved anyhow, in other words, that the
maximal information content of the signals is available.
We then have to compare the methods as to the effi-
ciency with which the information is utilized, i.e., with
respect to their systematic and random errors.

Case 1. Dual-Polarity Triggered Correlation
The first method, although technically not the sim-

plest one, appears to be the best one for computation of
a correlation function with an average-response com-
puter. When technical problems concerning a possible
difference of threshold levels for the two polarities are
solved, this method yields the correct answer. This
property in itself is independent of the height of the
threshold level b. If we look at the accuracy for finite-
time observation, however, the triggering level does
play a role. Choosing a very high b-value gives a good
signal output, but triggering does not occur very often,
so that accuracy is poor.

In order to put this into a more quantitative form we
assume that y(t) is Gaussian noise with unity variance,
and has a uniform spectral density h1,,(w) = 1/47rWo up
to a frequency c = 27zrWo and zero beyond. The average
number of times per second that the threshold b is
passed is in general [II]

-1 b2\
Nb = coo * exp - -1wr fe2e

where Co is the root-mean-square angular frequency

defined as

In our case

27r
(00 = -WO-V

\/3
In T seconds there will be on the average NbT computer
runs. In the case x(t) and y(t) are uncorrelated, and x(t)
is white noise, the computer processes independent
signals. The output, after averaging, will have a vari-
ance cr,2

co 2 =
NJT

If now the measured correlation p is small (p2<<KI), the
answer x= bp will be contaminated by a noise with a
variance nearly equal to zrn2. Then the signal-to-noise
ratio (which in effect determines the smallest correlation
value that is discernible) is

- 2
A = p2b2NbT =- WoTb2p2 exp (-b2/2). (8)

'/3
This expression is maximal for b = '/2, and assumes
then a value

ABULF°= 0.849 WoTp2. (9)

Under comparable circumstances, the signal-to-noise
ratio for "true correlation" is [121

A max-= WoT2Asn -WT (10)
Hence, dual-polarity triggered correlation produces for
small p, an output signal-to-noise ratio at least 3.7 dB
lower than true correlation. For the same accuracy 2.35
times as many data must be processed. This loss is of
the same order of magnitude as that for polarity corre-
lation [12].

Case 2. Single-Polarity Triggered Correlation
Single-polarity triggering is the simplest method of

using an average-response computer to obtain a cross-
correlation function. It requires a simple trigger circuit
that produces a sync pulse whenever the y-signal passes
the pre-set threshold b in a specified, e.g., the positive,
direction. The theory has shown that this method yields
a linear combination of the desired correlation function
42(T), and a disturbing term proportional to +X,(r).
This disturbing term in (6) is a systematic error. Since
there is in general no a priori reason why 4..(r) should
be materially smaller than 4,,(r), it can only be made
small in proportion by choosing a high value of b. Or
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else this systematic error can be removed by cancella-
tion. One processes the signals twice, with different
values of b, and subtracts the results. In this way only
the main term, the one proportional to pxv, will be left.
This procedure can even be carried out when the

amount of available signal data is limited so that one
should worry about random errors. For a single pro-
cessing run, accuracy is highest when b equals Va2, as
before. The output signal-to-noise ratio then is 3 dB
lower than in Case 1 since the number of computer runs
is halved. In this, the most simple of all cases of trig-
gered correlation, the signal-to-noise ratio thus is 6.7 dB
worse than for normal correlation. Accuracy will be
3 dB better when one carries out the cancellation pro-
cedure with a second processing run, this time with
b = - -V2. The situation is then fully comparable with
the one of Case 1.

In practice there is one pitfall: the computer effec-
tively does not produce an average, but a sum. Care
must therefore be taken to make the number of com-
puter runs the same in the two processing runs.

Case 3. Maximal- Valued Triggered Correlation

The average number of maxima of y(t) is equal to the
average number of zero crossings of the derivative y(t)
in a specified direction. For a y-signal with uniform
powerspectrum41,(co) overtherange -27rWo <w <27rWo,
the average number NmT of maxima in T seconds
is [11]

NmT = (Q)iWoT.
For small values of pXjI, the signal-to-noise ratio is

Asn +-+ WoTpxi2 = 0.494 WoTp,,2.
7r (5

If one would compute the correlation pZ; directly, the
signal-to-noise ratio would again be 2WTp2i. Hence,
the maximal-value triggering method is approximately
6.1 dB worse than true correlation; it requires 4.1 times
as many data for the same signal-to-noise ratio. In this
respect, it is entirely comparable to method 2 with a
loss of 6.7 dB.

Case 4. Quasi-Relay Triggered Correlation

Since Case 4 can hardly be realized in practice, we
refrain from discussing its accuracy in details. Let it be
sufficient to mention that the maximal loss of relay
correlation in signal-to-noise ratio is approximately
2 dB [12]. Quasi-relay correlation is 3 dB worse.

A PRACTICAL EXAMPLE (Case 2)

As an example to illustrate the method, we chose a
case where the shape of the correlation function can be
predicted. When a linear network is fed with white
noise, the input-output cross-correlation function pxy(r)
has the same shape as the network's impulse response,

(a)

(b)
Fig. 4. (a) Result of a computer run (see text). The input-output

correlation of an octave bandpass filter with white-noise excita-
tion is measured. Correlation function to be read from right to
left. Computer: Nuclear-Chicago type 7100 Data Retrieval
Computer. Filter: Wandel and Goltermann OB 5, octave filter,
set at a passband of 560 to 1120 Hz. Root-mean-square value of
y-signal: 0.21 volt. Threshold level: 0.60 volt. Number of sync
pulses processed: 10 000. Analysis time (full-width screen): 15 ms.
(b) Impulse response of the filter as photographed directly from
Tektronix type 535-A Oscilloscope.

h(r) but with T reversed [I ]

v(T) = h(-r).

Hence, for a given network, the correlation function is
known and the actual result of the computation can
easily be compared with the true answer. We chose this
property as the basis for our proof of the feasibility of
the method. We measured across a bandpass filter of
one octave bandwidth. We called the input x(t) and the
output signal y(t), and then computed the correlation
function q>(r) by letting y(t) trigger the computer.
Since y(t) could only be correlated with the past of x(t),
we had to delay x(t) before it was fed to the signal input
of the computer.' The result of a computer run is shown
in Fig. 4, together with the network's impulse response
measured directly. The correlogram must be read from
right to left, and it is seen to correspond well with the
impulse response. To illustrate this agreement some-
what further, the frequency spectrum associated with
the measured correlation function was determined.
With the computer, after the run, in the "display"
mode a repetitive signal was fed to the deflection plates
of the computer's oscilloscope. This signal was analyzed
by a spectrum recorder (Rohde and Schwarz type
FNA). Due to the periodicity, the spectrum showed
peaks at multiples of the scanning frequency (approxi-
mately 64 Hz in this case). See Fig. 5. The envelope of

1 Otherwise, x(t) and y(t) can be stored on magnetic tape and re-
produced backward so as to invert the direction of t.
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Fig. 5. Spectrum associated with the result shown in Fig. 4, above.
The measured correlation function was scanned 64 times/second.
Full-drawn line: frequency response of the filter as measured
directly (with proper driving and load resistances) by combina-
tion of Rohde and Schwarz Audio-Frequency Spectrograph type
FNA and the associated Synchronous Oscillator. Full width of
spectrum: 4 kHz, linearly divided. Vertical scale in decibels.

Fig. 6. Result of a computer run. The method is slightly different
from that employed in Fig. 4. See text. Note the somewhat larger
errors despite the fact that 10 000 sync pulses have been processed
as in Fig. 4.

the peaks indicates the Fourier transform of the mea-

sured correlation function. This is seen to agree sur-

prisingly well with the frequency response (full drawn
line inserted in the figure) of the filter as measured
directly. Fig. 6, finally, gives a correlation result ob-
tained in the same situation, but with x(t) triggering
the computer and y(t) being fed to the signal input of
the computer. In this case, the correlation function
appears, as Fig. 6 shows, in the usual form, from left to
right. It is seen that in this somewhat artificial case, it
does represent the network's impulse response well. The
random errors in the result seem larger here, however,
since successive y-signal fragments, as processed by the
computer, are no longer sections of white noise. That
means random errors for different values of r tend to
become correlated.

APPLICATION TO NEURAL EXCITATION PROCESSES

The initiation of nerve impulses can often be described
as a triggering process similar to Case 2 treated here.
That implies that the theory can be applied to these
cases. In fact, the theory was originally formulated to
assist in the analysis of inner-ear action. Consider the

Fig. 7. Weiss' model for the excitation of nerve
impulse in the inner ear (simplified).

model of Fig. 7, a model of the excitation of a single
nerve fiber in the inner ear (cochlea) by sound. The
model has been proposed by Weiss [13] in a study dedi-
cated to simulate the signal transformations in the inner
ear. Statistical properties of simulated nerve firings
were compared with published histograms of auditory
nerve impulses [14]. In the model the linear filter por-
trays the filtering action of the cochlea at the location
of the neuron. Its frequency characteristic shows rather
limited frequency selectivity; a band-pass characteristic
with a low-frequency slope of 6 dB/octave and a high-
frequency slope of 20 dB/octave [13]. The trigger/pulse
generator in the model represents the basic stimulus-
response relation of a neuron. To account for sponta-
neous discharges-in the absence of sound--an extra
noise source has been included. In addition, this repre-
sents the fundamentally random nature of nerve im-
pulse trains. Even in this simple form, the model can
account for many observations on nerve impulses in
auditory nerve fibers. Some remaining problems re-
quired the inclusion of a no-memory nonlinear network
interposed before the trigger/pulse generator [13].
The model of Fig. 7 is similar to the procedure of trig-

gered correlation, Case 2. As a matter of fact, Fig. 7,
excluding the source of extra noise, could have been
used as the block diagram of the system studied in the
preceding section. The addition of extra noise, as long
as it is independent of the stimulus, does not alter this.
Nor does a no-memory nonlinear network interposed
before the trigger circuit do any harm. In the case of the
auditory system, then, it should be possible to recover
the properties of the linear filter by correlation. One
should measure the cross-correlation function of the
acoustic input signal and the train of nerve impulses at
the output. This we can do by synchronizing the com-
puter with the nerve impulses, and letting it process
waveform sections of the input noise that occur just
prior to these impulses. When white noise is used at the
input, the correlogram will be a linear combination of
the linear filter's impulse response and its time deriva-
tive. In view of the poor cochlear frequency resolution,
one would expect a highly damped correlogram. Fig. 8
shows a typical experimental result for an auditory

0
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Fig. 8. Correlogram for an auditory neuron (67-12-16). White
noise acoustic input. Frequency of greatest sensitivity of the
neuron: 1500 Hz. Location of the electrode: auditory nerve
(histologically verified). In the processing, the reproduction was
at half the original tape speed; the noise was band-limited to
200 to 2000 Hz; the computer was started at the rising edges of
the neural spikes. Computer analysis time (full-width screen):
15 ms. Number of spikes processed: 4403.

neuron [15]. It shows, contrary to expectation, that a
very material amount of frequency selectivity is in-
volved in the firing of a neuron. Further analysis shows,
for instance, that the associated frequency characteristic
has a maximum slope of the order of 120 dB/octave.

It was known that with pure-tone stimulation, an
auditory neuron is very frequency-selective. The modi-
fied method of triggered correlation shows that this
selectivity remains demonstrable when the ear is stimu-
lated with white noise. As a matter of fact, the selec-
tivity (as judged by the slope of the associated frequency
characteristic) is hardly less than that for tones. If the
model applies in this case, the linear-filter part of it
must be considerably more frequency-selective than the
filtering action of cochlear dynamics. This apparent
sharpening, incidentally, serves also to explain the
remaining discrepancies between Weiss' original model
and experimental data. The next point is the question
whether the modified model in its generality does indeed
fit the data or not. Discussion in terms of this model
actually implies linearization of the processes in the
cochlea. Frequency selection then automatically as-
sumes the character of linear filtering, while nonlinear-
ities show up as no-memory nonlinearities. Whether
this is legitimate or not remains to be seen. In an at-
tempt to answer this question, efforts are at present di-
rected toward analyzing cochlear action in terms of
higher-order nonlinearities. With a technique that is
essentially an extension of the one described here,
higher-order correlation functions can be measured to
provide the experimental basis for such an analysis [16].

CONCLUDING REMARKS

Several methods can be devised to let an average-
response computer produce an approximation to a cross-
correlation function. The simplest methods entail direct
production of sync pulses for the computer with help
of a trigger circuit. The derivations presented above
have shown that such procedures are quite successful.

They easily produce a good estimate of the desired cor-
relation function. Overall accuracy is minimally 3.7 dB
worse than that for true correlation. This is the penalty
we must pay in exchange for elegance, simplicity, and
speed. The quality of the obtained correlation function
is so good that it allows for further processing, e.g., the
measurement of its associated Fourier spectrum. An
example of this has been presented.
One of the various methods treated, the simplest one,

Case 2, has a larger scope. It indicates a specific way to
analyze a compound system consisting of a linear circuit
followed by a trigger/pulse generator. It is shown that
such compound systems can be analyzed by taking
noise as the input signal, and computing the input-
output cross-correlation function. The resulting func-
tion is closely related to the impulse response of the
linear circuit included in the system. This view of trig-
gered correlation may provide a novel method for study-
ing certain neurophysiologic mechanisms. It has already
been found useful in the study of the inner ear.

APPENDIX I

RELAY CORRELATION

Consider the signal values x =x(t+T) and y =y(t) as
two random variables, x and y, that have a joint Gaus-
sian probability density function. Assume these have
unity variance, zero mean, and a correlation coefficient p.
Then p is, in fact, the value of the correlation function
0,(r) at the pertinent value of T, and

f x- 2pxy + y2 )~
p(x,y) = cexp X- 2(_ p2) J

2(wi
with

1
c =

27r(l - p2)1/2

The relay correlation p.,. is calculated by replacing one
of the variables, in this case y, by + 1 when it is positive,
and by -1 when it is negative. Price's theorem [17 ] can
be used to analyze such a situation. It states that, when
the Gaussian variables x and y are transformed to x' and
y', the expectation x'. y' of the product x' y' satisfies

dpx'y' dE(xpy'))
dp \ p

In our case x' =x and y' =sign (y), hence

d9x1y' r+0 r+0 2X-2pxy+Y2)
= c 0 f 26(y) exp { } dxdyop f_ _ 2(1- p2)

r+ { x2 2/ 2\3
= 2cJ exp i- (_2 dx = _
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For p = 0, x'y' = 0; hence, the integration constant is
zero. The final result, valid for Gaussian variables, reads

Pxyr = XfyI = p. (11)

Note that Pz,,r originally is defined as a covariance,
namely as x'y7. Since our variables x and y are normal-
ized there is no objection against calling pzyrt a correla-
tion coefficient here.
We now proceed to remove these restrictions. Since

Price's theorem holds only for variables with unity
variance, we must take the expectation with respect to
the original x and y, and use various new substitutions.
If we first substitute x'=o-,,x and y'=sign (o-,y), we
cover the case of centered variables with variances us2
and 02 , respectively. We then find

xiyI = 'a-x.

To avoid confusion, one should not use the symbol p,
here. If we now substitute x' =-x+1i., y' = ayy +1A,, and
y" =sign y', we get

Oxfy't +00 +00

p 00 xoo *268(oryy + /uy) p(x, y)dxdy

r.+eF X2 + (2px1,/oyy) + A 2/22f_ exp L p2)dx

r+0 r (x + pAY10,Y)2
= 2caor exp -[ + 1_Yp2]

A 2

exp -2 )dx

-V(3 ). exp(- 2)

The integration constant is no longer zero. It can be
found by direct computation of y'x' for the case p= 0.
We then find the following two terms, first

x+=J f (o.,,x+y')depx'-xd+y')XdGo -00

rXo +0 / X2 + y2

COJ (arX + ux,) exp - 2 )dxdy
as the contribution from positive y'-values and, simi-
larly,

r-;Vl'Y r0 2+ / s 2
= co 'uI (fo+ x + .u) exp ( - dxdy,

-002

where

Co = (2r)-1,
as the contribution from negative y'-values. Carrying

out the integration over x, one finds

x+= (27r)1/x exp-( dy

rft0-Y
(

y2(27r)-iMxf exp - 2dY
002

and by combination

7I'P-0 =+x- x=(- ) Az

r+ft i(f y2\L/Uexp (- d~cy.
Hence, the final result reads

/2\ rf'/- y2x y c _)yxJ exp - dy

+ p(_) (Tx - exp (-2-2 /

(12)

(13)

(14)

The same method can be applied to polarity correlation
[17], [18]. We easily derive for the case of centered
variables with unity variance

d9pxyp 1

Op 2r(1- p2)i

This gives after integration (p, = 0 when p = 0)

2=(
PxyP= -arc sin p. (15)

Except for p = 1, the relation between p and pX1/P is mono-
tonic. Zero crossings and maxima, for instance, of the
correlation function 4,2(r) occur at the same values of
r in 4q1/,(r), hence, the general shape of 45(r) is reason-
ably well retained. When all correlations are small,
4., (r) is even proportional to 4y(r).

APPENDIX I I
SINGLE-POLARITY TRIGGERED CORRELATION

We proceed to derive the average value t+ of x under
the conditions y = b and z> 0

fxp(xI y = b, z > O)dxdydz

I p(x I y = b, z > O)dxdydz

Let the correlation matrix {R } of x, y and z be

r1 pzi P:z}{R}= px 1 0

Prz 0 1
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The expression for the joint probability density function
p(x, y, z) involves elements of the inverse of the matrix
{R} [19]. The associated characteristic function
C(Qu, U2, U3) is a relatively simple function:

C(U1, U2, U3) = exp I-2 (U12 + U22 + U32 + 2P2xU1U2

+ 2p.ulu3)}.

We shall base the calculation on this function. We com-
pute x+ in two steps, one for the condition y = b, and one
to take care of z > 0. The first step includes computation
of the characteristic function D(ul, U3) associated with
the conditional probability density q(x, zfy=b). The
latter function can be defined as

+00

q(x, z I y = b) = k p(x, y, z)5(y - b)dy.

The meaning of k is as stated earlier. This relation can
be interpreted in several ways. In terms of characteristic
functions, the multiplication under the integral sign is
equivalent to convolution of C(U1, U2, U3) with the func-
tion k exp (iu2b). The integration then implies a re-
duction to the marginal distribution of x and z, condi-
tional on y = b. These two procedures are executed as
follows. The convolution in the u2-domain becomes

(+00

C'(Ul, U2, U3) = k j C(ui, QU3) exp ib(u2 -)d.
co

Grouping of the relevant terms under the integral sign
gives rise to the integral

I = f__ exp {-_(712 + 2pxyUlv + 2ibt)d-
-X

- (2Xr)I exp (p,ul + ib)2.

The complete characteristic function C'(UI, U2, U3)
becomes

C'(U1, u2, us3) = exp {-2 (U12 + 2pXzU1u3 + U32)
± 2b2 + ibU2 + I(p5yul + ib)2}.

As a function of U2, it behaves as exp ibu2, which form
corresponds to 8(y-b) in the y-domain. To obtain the
characteristic function D(ul, U3), corresponding to the
marginal x-z distribution, we merely have to put U2
equal to zero.

D(u1, U3) -exp I-(U12 + 2pxzuiU3 + u32)
(16)

+ b2 + (pxu + ib)2}(

This completes the first step. The result is seen to be the
characteristic function of two jointly distributed Gaus-
sian variables.

D(ul, U3) = exp { -(U12012 + 2pulu3o-103 + u32a32)
+ i(/2IuI + L3U3)J

where Ut2 and U32 are the variances, and pil and A3 the
means of these variables, and p is the correlation coeffi-
cient. Thus we obtain the following identifications:

v2 = 1-w0112 Pz-Y2
32 _

0f3 1 :

P0'10'3 Pxz

IA = bpxy
/23 = 0.

As the second step we must compute the average
value x+ of x over the obtained distribution, but aver-
aged under the condition z>O. Relation (12) gives the
contribution x+ under the condition z>0. Since /23=0,
the condition occurs with probability 2. Hence, twice
this term is the desired x+. With the remaining identifi-
cations one obtains directly, when adding the second
term of (14)

(17)x+= p +(b ) Pxz.
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The Solution of Overdetermined Linear Equations
as a Multistage Process

CHARLES L. ROGERS, B.E.E., M.S., Ph.D., MEMBER, IEEE, AND
THEO C. PILKINGTON, B.E.E., M.S., Ph.D., MEMBER, IEEE

Abstract-The concepts of dynamic programming and multistage
process theory are used to determine an analytic, least-squares solu-
tion to overdetermined linear algebraic equations. The method re-
quires the calculation of a secondary system matrix which, together
with the primary matrix, makes evident the relative dependence of
the system equations. It is shown that the minimum-sum-square
residual, a measure of the fit of the solution, can be determined with-
out explicit calculation of the solution.

I. INTRODUCTION

N THE STUDY of systems, especially those of bio-
logical origin, one is often faced with the necessity
of solving large sets of overdetermined, incompati-

ble, linear algebraic equations.' Such equations can be
solved only by applying some constraint. A commonly
used constraint is the method of least squares which
requires that the sum of the squared residuals be a
minimum.
This paper presents a method of solution that is de-

veloped using the concepts of dynamic programming
and multistage process theory [2]. The theory is em-
ployed, in concept only, to derive a set of analytic re-
currence equations with which the unknowns can be
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' An overdetermined set is one having more equations than un-
knowns. An incompatible set is one which no set of unknowns can
identically satisfy. See Lanczos [11.

calculated. The minimum sum of tlhe squared residuals
can be expressed in closed form, independent of the
unknowns of the system. A secondary system matrix is
calculated in the process of the solution, and this
secondary matrix, together with the primary matrix,
makes evident the relative dependence of the system
equations.
The results of this method of solution are summarized

as follows. The solution of the set
N

-E Cjpj = R
i=1

subject to the constraint

f(4)) min (R2),
all p

(1)

(2)

where 4), Cj, and R are M-dimensional vectors witl
M>N, can be determined as

Ek / N

pk = 2'* t - E-Cjpj I

Ek \ j=k+ 1
(3)

where
k-i1 Er -Ck

Ek =Ck - Er
r=1 Er

The minimum-sum-squared residual is given by
/ ) E(ND)\f (D))= 4)(D jl - Z,EIG; k I.

k=i Ek'

(4)

(5)
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